PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one], a kind of the carbazole derivative containing chalcone moiety, induced cell apoptosis in human pancreatic carcinoma in vitro. There is no investigation to show that PW06 inhibits cancer cell metastasis in human pancreatic carcinoma in vitro. Herein, PW06 (0.1-0.8 μM) significantly exists in the antimetastatic activities of human pancreatic carcinoma MIA PaCa-2 cells in vitro. Wound healing assay shows PW06 at 0.2 μM suppressed cell mobility by 7.45 and 16.55% at 6 and 24 hours of treatments. PW06 at 0.1 and 0.2 μM reduced cell mobility by 14.72 and 21.8% for 48 hours of treatment. Transwell chamber assay indicated PW06 (0.1-0.2 μM) suppressed the cell migration (decreased 26.67-35.42%) and invasion (decreased 48.51-68.66%). Atomic force microscopy assay shows PW06 (0.2 μM) significantly changed the shape of cell morphology. The gelatin zymography assay indicates PW06 decreased MMP2's and MMP9's activities at 48 hours of treatment. Western blotting assay further confirms PW06 reduced levels of MMP2 and MMP9 and increased protein expressions of EGFR, SOS1, and Ras. PW06 also increased the p-JNK, p-ERK, and p-p38. PW06 increased the expression of PI3K, PTEN, Akt, GSK3α/β, and E-cadherin. Nevertheless, results also show PW06 decreased p-Akt, mTOR, NF-κB, p-GSK3β, β-catenin, Snail, N-cadherin, and vimentin in MIA PaCa-2 cells. The confocal laser microscopy examination shows PW06 increased E-cadherin but decreased vimentin in MIA PaCa-2 cells. Together, our findings strongly suggest that PW06 inhibited the p-Akt/mTOR/NF-κB/MMPs pathways, increased E-cadherin, and decreased N-cadherin/vimentin, suppressing the migration and invasion in MIA PaCa-2 cells in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.24143DOI Listing

Publication Analysis

Top Keywords

mia paca-2
20
paca-2 cells
20
human pancreatic
16
pancreatic carcinoma
16
pw06
15
pw06 02 μm
12
pw06 increased
12
cancer cell
8
cell metastasis
8
metastasis human
8

Similar Publications

: Pancreatic cancer has the worst prognosis of all common cancers worldwide. Cadherin plays important roles in cancer cell invasion and metastasis. This study investigated the role and mechanism of Cadherin 23 (CDH23) action in the viability of pancreatic cancer cells.

View Article and Find Full Text PDF

Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells.

J Inorg Biochem

December 2024

Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial-mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.

View Article and Find Full Text PDF

The condition of cellular senescence has specific features, including an altered lipid metabolism. Delta-9 desaturase (Δ9) catalyzes the conversion of saturated fatty acids, such as palmitic acid and stearic acid, into their monounsaturated forms, palmitoleic and oleic acid, respectively. Δ9 activity is important for most lipid functions, such as membrane fluidity, lipoprotein metabolism and energy storage.

View Article and Find Full Text PDF

Background: Methionine restriction (MR) has been demonstrated to exhibit anti-tumor effects in various types of cancer, including pancreatic cancer (PC). However, the detailed mechanism induced by MR remains still unclear. This study aims to reveal the underlying mechanism of MR on PC by proteomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!