Amino acid esters can destroy intracellular as well as isolated amastigotes of Leishmania mexicana amazonensis. In the present study we examined, using a tetrazolium reduction assay, the toxicity of the esters for amastigotes isolated from mouse lesions. Parasite killing by the "prototype" compound L-leucine methyl ester at 1 mM concentration and at pH 7.3 took place within 15-30 min. Time-lapse cinematographic observations showed that the amastigotes rounded up and became less phase-dense before they rapidly broke down. Ammonium chloride, ethylamine or monensin, known to raise the intracellular pH, reduced the sensitivity of the amastigotes to L-Leu-OMe. This finding suggests that an acidified compartment is involved in the destruction of the parasites. The leishmanicidal activity of a series of L-amino acid esters was also investigated. The ED50 (concentration for half maximal effect) for methyl esters was (in mM): Leu (0.62), Trp (0.96), Met (1.13), Glu (2.0), Phe (2.5), and Tyr (3.8). In contrast, the methyl esters of Ile, Val, Ala, beta Ala, Gly, Ser, His, and Pro were either inactive or weakly active at 15 mM. Benzyl esters were more active than their methyl homologs: the ED50 of the benzyl esters of Leu, Val, Ile, Gly, Ala, beta Ala, and Pro were, respectively, 0.07, 0.20, 0.22, 0.88, 1.5, 2.3, and 6.7 mM. Ranks of leishmanicidal activity may reflect differences in the rates of ester uptake and trapping by the amastigotes, in the specificity of the relevant hydrolytic enzyme(s), in the accumulation and metabolic fate of the released amino acids, or in the toxicity of the amino acid or alcohol released within the amastigotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4269/ajtmh.1987.36.288 | DOI Listing |
Hum Genomics
January 2025
Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Background: The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Environmental and Biochemical Sciences, James Hutton Institute, Dundee, Scotland, UK.
Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
The metabolomic approach has recently been used in the assessment of semen quality and male fertility. Additionally, the crucial roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in metabolic syndrome (MetS) were reported. However, little information exists about the association between BCAAs and AAAs with semen parameters, particularly in men with and without MetS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!