Spike timing-based representations of sensory information depend on embedded dynamical frameworks within neuronal networks that establish the rules of local computation and interareal communication. Here, we investigated the dynamical properties of olfactory bulb circuitry in mice of both sexes using microelectrode array recordings from slice and in vivo preparations. Neurochemical activation or optogenetic stimulation of sensory afferents evoked persistent gamma oscillations in the local field potential. These oscillations arose from slower, GABA(A) receptor-independent intracolumnar oscillators coupled by GABA(A)-ergic synapses into a faster, broadly coherent network oscillation. Consistent with the theoretical properties of coupled-oscillator networks, the spatial extent of zero-phase coherence was bounded in slices by the reduced density of lateral interactions. The intact in vivo network, however, exhibited long-range lateral interactions that suffice in simulation to enable zero-phase gamma coherence across the olfactory bulb. The timing of action potentials in a subset of principal neurons was phase-constrained with respect to evoked gamma oscillations. Coupled-oscillator dynamics in olfactory bulb thereby enable a common clock, robust to biological heterogeneities, that is capable of supporting gamma-band spike synchronization and phase coding across the ensemble of activated principal neurons. Odor stimulation evokes rhythmic gamma oscillations in the field potential of the olfactory bulb, but the dynamical mechanisms governing these oscillations have remained unclear. Establishing these mechanisms is important as they determine the biophysical capacities of the bulbar circuit to, for example, maintain zero-phase coherence across a spatially extended network, or coordinate the timing of action potentials in principal neurons. These properties in turn constrain and suggest hypotheses of sensory coding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615692PMC
http://dx.doi.org/10.1152/jn.00361.2023DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
20
gamma oscillations
16
principal neurons
12
field potential
8
zero-phase coherence
8
lateral interactions
8
timing action
8
action potentials
8
oscillations
6
bulb
5

Similar Publications

Olfactory Dysfunction in Allergic Rhinitis.

Clin Rev Allergy Immunol

December 2024

Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Olfactory dysfunction (OD) can have serious consequences as it hinders individuals from detecting important warning signals like smoke, spoiled food, and gas leaks. This can significantly impact their nutritional status, eating satisfaction, and overall quality of life. Allergic rhinitis (AR) is a common disease that greatly affects the quality of life and can lead to a decrease, distortion, or complete loss of olfactory ability.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is a progressive irreversible dementia characterized by beta-amyloid protein plaque deposition and hyperphosphorylation of tau forming neurofibrillary tangles, and neurodegeneration. An emerging theory posits that infections could be one of the triggering factors in AD development and progression. Multiple lines of evidence have linked Chlamydia pneumoniae (Cp), a gram-negative obligate intracellular bacterium with AD.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) manifests early in the olfactory system, yet its precise role in the pathophysiology of AD remains elusive. This study aims to elucidate the progression of olfactory dysfunction in AD by investigating the dysregulation of the adenosine 2A receptor (A2AR) and its potential involvement in the formation of abnormal plaques and tangles. A2AR plays a pivotal role in modulating synaptic transmission and neuroinflammation by regulating both neurons and glial cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.

Background: Lewy body disease (LBD) often co-occurs with Alzheimer's (AD), resulting in more significant cognitive decline than AD or LBD alone. LBD's hallmarks, asyn-positive Lewy bodies and neurites, propagate from the enteric system or olfactory bulb to the amygdala, which acts as a gatekeeper for spread to other structures. Initially, LBD appears in the central or cortical nuclei, reflecting brainstem or olfactory origins.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the progressive impact of chronic iron overload on the olfactory bulb, a region significantly affected in early neurodegenerative diseases like Parkinson's and Alzheimer's. The focus is on understanding how iron accumulation leads to oxidative stress, mitochondrial dysfunction, and neuronal damage over time in middle-aged mice.

Method: The mice were continuously administered FC for a duration of 16 weeks, and the olfactory behavior of the mice was observed at intervals of 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!