Purpose: Inflammation and oxidative stress contribute to age-related macular degeneration (AMD) and other retinal diseases. We tested a cell-penetrating peptide from the kinase inhibitory region of an intracellular checkpoint inhibitor suppressor of cytokine signaling 3 (R9-SOCS3-KIR) peptide for its ability to blunt the inflammatory or oxidative pathways leading to AMD.

Methods: We used anaphylatoxin C5a to mimic the effect of activated complement, lipopolysaccharide (LPS), and tumor necrosis factor alpha (TNFα) to stimulate inflammation and paraquat to induce mitochondrial oxidative stress. We used a human retinal pigment epithelium (RPE) cell line (ARPE-19) as proliferating cells and a mouse macrophage cell line (J774A.1) to follow cell propagation using microscopy or cell titer assays. We evaluated inflammatory pathways by monitoring the nuclear translocation of NF-κB p65 and mitogen-activated protein kinase p38. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the induction of inflammatory markers. In differentiated ARPE-19 monolayers, we evaluated the integrity of tight junction proteins through microscopy and the measurement of transepithelial electrical resistance (TEER). We used intraperitoneal injection of sodium iodate in mice to test the ability of R9-SOC3-KIR to prevent RPE and retinal injury, as assessed by fundoscopy, optical coherence tomography, and histology.

Results: R9-SOCS3-KIR treatment suppressed C5a-induced nuclear translocation of the NF-kB activation domain p65 in undifferentiated ARPE-19 cells. TNF-mediated damage to tight junction proteins in RPE, and the loss of TEER was prevented in the presence of R9-SOCS3-KIR. Treatment with the R9-SOCS3-KIR peptide blocked the C5a-induced expression of inflammatory genes. The R9-SOCS3-KIR treatment also blocked the LPS-induced expression of interleukin-6, MCP1, cyclooxygenase 2, and interleukin-1 beta. R9-SOCS3-KIR prevented paraquat-mediated cell death and enhanced the levels of antioxidant effectors. Daily eye drop treatment with R9-SOCS3-KIR protected against retinal injury caused by i.p. administration of sodium iodate.

Conclusions: R9-SOCS3-KIR blocks the induction of inflammatory signaling in cell culture and reduces retinal damage in a widely used RPE/retinal oxidative injury model. As this peptide can be administered through corneal instillation, this treatment may offer a convenient way to slow down the progression of ocular diseases arising from inflammation and chronic oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10805335PMC

Publication Analysis

Top Keywords

oxidative stress
12
r9-socs3-kir treatment
12
suppressor cytokine
8
cytokine signaling
8
inflammatory oxidative
8
r9-socs3-kir
8
r9-socs3-kir peptide
8
nuclear translocation
8
induction inflammatory
8
tight junction
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!