AI Article Synopsis

  • Traditional culture methods for diagnosing infections take a long time, but Nanopore 16S rRNA gene sequencing could speed up bacterial identification in infected fluids.
  • A study tested the effectiveness of Nanopore 16S using various samples, comparing results from different analysis pipelines—Epi2me, Emu, and NanoCLUST—to traditional culturing methods.
  • Emu showed the best accuracy in identifying bacteria, correctly classifying 97.7% of monomicrobial samples, while challenges persisted in dealing with polymicrobial samples, and the method could provide results within 6 hours.

Article Abstract

The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803466PMC
http://dx.doi.org/10.3389/fmicb.2023.1324494DOI Listing

Publication Analysis

Top Keywords

nanopore 16s
32
monomicrobial samples
16
body fluids
12
polymicrobial samples
12
samples
9
clinical utility
8
nanopore
8
utility nanopore
8
16s
8
16s rrna
8

Similar Publications

Article Synopsis
  • The Chinese hibiscus is a popular decorative and medicinal plant, but it is vulnerable to various bacterial infections.
  • In March 2019, a bacterial isolate named "Hibiscus 35-1" was identified from affected hibiscus plants in a New York greenhouse, showing leaf spots and chlorosis after being moved from Florida.
  • Experiments confirmed the pathogenicity of "Hibiscus 35-1," causing symptoms in inoculated hibiscus plants while control plants showed no symptoms, highlighting the significance of bacterial pathogens in ornamental horticulture.
View Article and Find Full Text PDF

The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta.

Microorganisms

December 2024

The BioArte Ltd., Life Science Park, Triq San Giljan, 3000 San Gwann, Malta.

The human respiratory tract is colonized by a complex microbial community that helps maintain respiratory health and plays a crucial role in defending the host from infections. Respiratory viruses have been demonstrated to alter microbiota composition, resulting in opportunistic species expansion, and increasing the disease severity and host susceptibility to bacterial co-infections. This study aims to examine the compositional differences in the nasal microbiota between SARS-CoV-2-infected and non-infected patients.

View Article and Find Full Text PDF
Article Synopsis
  • The study of taxonomic composition has shifted from traditional methods to advanced DNA sequencing techniques, particularly metabarcoding, which uses targeted genome portions for high-throughput sequencing.
  • Recent innovations in Oxford Nanopore Technologies have made sequencing more accessible and effective while presenting specific errors and a need for refined bioinformatics tools to handle long-read data.
  • PRONAME, a new open-source pipeline designed for Nanopore data, enhances sequence accuracy and supports custom database integration, achieving over 99.5% accuracy in tests, thus providing a reliable method for analyzing complex biological communities.
View Article and Find Full Text PDF

Salivary microbiota dysbiosis and elevated polyamine levels contribute to the severity of periodontal disease.

BMC Oral Health

January 2025

Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.

Background: The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis.

View Article and Find Full Text PDF
Article Synopsis
  • Pregnancy involves significant hormonal and metabolic changes to support fetal development, which the study investigates through changes in the salivary microbiome and biochemical markers between the second and third trimesters.
  • Saliva samples from 45 pregnant women were analyzed using advanced DNA sequencing techniques, revealing notable shifts in microbial diversity, including a 3-fold increase in Bacteroidota and changes in other microbial taxa.
  • Biochemical changes included increased BMI, pulse rate, glucose, and cholesterol levels in the third trimester, along with correlations between these factors and microbial abundance, emphasizing the need for monitoring oral health and metabolic health during pregnancy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!