AI Article Synopsis

  • The study investigates the antimicrobial effects of cold atmospheric plasma (CAP) on bacteria linked to canine bacterial keratitis.
  • CAP treatment was tested on multiple bacterial strains from infected dogs, using various treatment durations and distances, demonstrating effective bacterial growth reduction.
  • The most successful treatment was a 5-minute application at a 3mm distance, yielding significant inhibition zones, while argon alone did not reduce bacterial growth.

Article Abstract

Purpose: To investigate the antimicrobial effect of cold atmospheric plasma (CAP) on pathogens associated with canine bacterial keratitis.

Materials And Methods: , , and strains, which were obtained from dogs with infectious keratitis, were subjected to testing. For each species, four isolates and a reference strain were cultivated on Columbia sheep blood agar and treated with the kiNPen Vet plasma pen from Neoplas GmbH, Greifswald, Germany. Various continuous treatment durations (0.5, 2, and 5 min) were applied, along with a 0.5-min treatment repeated four times at short intervals. These treatments were conducted at distances of 3 and 18 mm between the agar surface and the pen.

Results: CAP treatment reduced bacterial growth in all three species. The most effective treatment duration was 5 min at 3 mm distance, resulting in inhibition zones ranging from 19 to 22 mm for , 26-45 mm for and an overall reduction of bacterial growth for . Inhibition zones were smaller with decreasing treatment duration and larger distance. Treatment times of 30 s repeated four times and 2 min showed comparable results. Treatment with argon alone did not lead to visible reduction of bacterial growth.

Conclusion: Argon cold atmospheric plasma demonstrated a potent antimicrobial effect on and strains with the latter showing the highest sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803497PMC
http://dx.doi.org/10.3389/fvets.2023.1320145DOI Listing

Publication Analysis

Top Keywords

cold atmospheric
12
atmospheric plasma
12
argon cold
8
associated canine
8
canine bacterial
8
repeated times
8
bacterial growth
8
treatment duration
8
inhibition zones
8
reduction bacterial
8

Similar Publications

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.

View Article and Find Full Text PDF

Introduction: TWe investigated impacts of particulate matter with an aerodynamic diameter of less than 2.5 μm (PM), relative humidity (RH), and temperature on sleep stages and arousal.

Materials And Methods: A cross-sectional analysis involving 8,611 participants was conducted at a sleep center in Taipei.

View Article and Find Full Text PDF

Cold atmospheric plasma potentiates ferroptosis via EGFR(Y1068)-mediated dual axes on GPX4 among triple negative breast cancer cells.

Int J Biol Sci

January 2025

Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.

Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.

View Article and Find Full Text PDF

Globally there is a shortage of available donor corneas with only 1 cornea available for every 70 needed. A large limitation to corneal transplant surgery is access to quality donor tissue due to inadequate eye donation services and infrastructure in many countries, compounded by the fact that there are few available long-term storage solutions for effectively preserving spare donor corneas collected in countries with a surplus. In this study, we describe a novel technology termed low-temperature vacuum evaporation (LTVE) that can effectively dry-preserve surplus donor corneal tissue, allowing it to be stored for approximately 5 years, shipped at room temperature, and stored on hospital shelves before rehydration prior to ophthalmic surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!