Objective: This study aimed to perform an integrated pan-cancer analysis to characterize the expression patterns, prognostic value, genetic alterations, and immunologic roles of transforming growth factor beta 1 (TGFB1) across diverse human cancer types.
Methods: Bioinformatics analyses were conducted using multiple public databases including The Cancer Genome Atlas, Genotype-Tissue Expression, Clinical Proteomic Tumor Analysis Consortium, TIMER2, GEPIA2, cBioPortal, StringDB, and others. Differential expression, survival, immune correlation, and protein interaction network analyses were performed.
Results: TGFB1 was overexpressed in several tumor types compared with that in normal tissues. High TGFB1 expression was associated with an advanced stage and poorer prognosis in certain cancers. TGFB1 mutations occurred in 1.3% of 10,967 cases surveyed. TGFB1 expression correlated with tumor-infiltrating immune cells and immunotherapy-related genes.
Conclusions: This comprehensive multi-omics analysis revealed the complex expression and prognostic landscape of TGFB1 across cancers. TGFB1 is emerging as a potential immunotherapeutic target in certain contexts. Further research should elucidate its multifaceted tumor-promoting and tumor-suppressive mechanisms. Our pan-cancer analysis provides new insights into TGFB1 as a prognostic biomarker and immunotherapeutic target in human cancers, and our findings may guide future preclinical and clinical investigations of TGFB1-directed therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807329 | PMC |
http://dx.doi.org/10.1177/03000605231221361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!