A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sugars induced exfoliation of porous graphitic carbon nitride for efficient hydrogen evolution in photocatalytic water-splitting reaction. | LitMetric

Sugars induced exfoliation of porous graphitic carbon nitride for efficient hydrogen evolution in photocatalytic water-splitting reaction.

Sci Rep

Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065, Szczecin, Poland.

Published: January 2024

Photocatalytic hydrogen evolution holds great promise for addressing critical energy and environmental challenges, making it an important area in scientific research. One of the most popular photocatalysts is graphitic carbon nitride (gCN), which has emerged as a noteworthy candidate for hydrogen generation through water splitting. However, ongoing research aims to enhance its properties for practical applications. Herein, we introduce a green approach for the fabrication of porous few-layered gCN with surface modifications (such as oxygen doping, carbon deposition, nitrogen defects) with promoted performance in the hydrogen evolution reaction. The fabrication process involves a one-step solvothermal treatment of bulk graphitic carbon nitride (bulk-gCN) in the presence of different sugars (glucose, sucrose, and fructose). Interestingly, the conducted time-dependent process revealed that porous gCN exfoliated in the presence of fructose at 180 °C for 6 h (fructose_6h) exhibits a remarkable 13-fold promotion of photocatalytic hydrogen evolution compared to bulk-gCN. The studied materials were extensively characterized by microscopic and spectroscopic techniques, allowing us to propose a reaction mechanism for hydrogen evolution during water-splitting over fructose_6h. Furthermore, the study highlights the potential of employing a facile and environmentally friendly fructose-assisted solvothermal process to improve the efficiency and stability of catalysts based on graphitic carbon nitride.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10805789PMC
http://dx.doi.org/10.1038/s41598-024-52593-4DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
20
graphitic carbon
16
carbon nitride
16
photocatalytic hydrogen
8
hydrogen
6
carbon
5
evolution
5
sugars induced
4
induced exfoliation
4
exfoliation porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!