TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897448PMC
http://dx.doi.org/10.1038/s44319-024-00058-0DOI Listing

Publication Analysis

Top Keywords

tfeb
8
mitochondrial
4
mitochondrial translocation
4
translocation tfeb
4
tfeb regulates
4
regulates complex
4
complex inflammation
4
inflammation tfeb
4
tfeb master
4
master regulator
4

Similar Publications

Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation.

View Article and Find Full Text PDF

Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux.

Phytomedicine

December 2024

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China. Electronic address:

Background: Oral squamous cell carcinoma (OSCC) is one of the most common malignancies. However, there is no effective treatment for OSCC.

Purpose: This study aimed to identify a natural compound with significant efficacy against OSCC and elucidate its primary mechanism of action.

View Article and Find Full Text PDF

Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear.

View Article and Find Full Text PDF

African American (AA) women are disproportionally affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) contributing to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair Natural Killer cells (NKs). As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK dysfunction related to obesity and hyperlipidemia in AA women from under-resourced neighborhoods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!