Objectives: The study aims to investigate the short-term associations between exposure to ambient air pollution (nitrogen dioxide (NO), particulate matter pollution-particles with diameter<2.5 µm (PM) and PM) and incidence of asthma hospital admissions among adults, in Oxford, UK.
Design: Retrospective time-series study.
Setting: Oxford City (postcode areas OX1-OX4), UK.
Participants: Adult population living within the postcode areas OX1-OX4 in Oxford, UK from 1 January 2015 to 31 December 2021.
Primary And Secondary Outcome Measures: Hourly NO, PM and PM concentrations and meteorological data for the period 1 January 2015 to 31 December 2020 were analysed and used as exposures. We used Poisson linear regression analysis to identify independent associations between air pollutant concentrations and asthma admissions rate among the adult study population, using both single (NO, PM, PM) and multipollutant (NO and PM, NO and PM) models, where they adjustment for temperature and relative humidity.
Results: The overall 5-year average asthma admissions rate was 78 per 100 000 population during the study period. The annual average rate decreased to 46 per 100 000 population during 2020 (incidence rate ratio 0.58, 95% CI 0.42 to 0.81, p<0.001) compared to the prepandemic years (2015-2019). In single-pollutant analysis, we observed a significantly increased risk of asthma admission associated with each 1 μg/m increase in monthly concentrations of NO 4% (95% CI 1.009% to 1.072%), PM 3% (95% CI 1.006% to 1.052%) and PM 1.8% (95% CI 0.999% to 1.038%). However, in the multipollutant regression model, the effect of each individual pollutant was attenuated.
Conclusions: Ambient NO and PM air pollution exposure increased the risk of asthma admissions in this urban setting. Improvements in air quality during COVID-19 lockdown periods may have contributed to a substantially reduced acute asthma disease burden. Large-scale measures to improve air quality have potential to protect vulnerable people living with chronic asthma in urban areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10806833 | PMC |
http://dx.doi.org/10.1136/bmjopen-2022-070704 | DOI Listing |
Eur J Prev Cardiol
January 2025
Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
Aims: Exposure to air pollution including diesel engine exhaust (DEE) is associated with increased risk of acute myocardial infarction (AMI). Few studies have investigated the risk of AMI according to occupational exposure to DEE. The aim of this study was to evaluate the association between occupational exposure to DEE and the risk of first-time AMI.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Science and Environment, University of Saint Joseph, Macao, Macao S.A.R., China.
While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Shandong, 250100, P. R. China.
Acoustic frequency combs (AFCs) contain equidistant coherent signals with unconventional possibilities on metrology. Previously, implementation of AFCs on mechanical microresonators with large air damping loss is difficult, which restricted their atmospheric applications. In this work, we explore the potentials of a composite diamond/silicon microcantilever for parametric generation of AFCs in ambient air.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States. Electronic address:
The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM concentrations and obstructive sleep apnea (OSA) in children.
View Article and Find Full Text PDFIntroduction: Short-term exposure to air pollution may worsen the course of ischemic heart disease (IHD), causing acute and chronic coronary syndromes.
Objectives: This study aimed to assess the risk of hospital admission due to chronic and acute coronary syndromes (ACS) after exposure to various air pollutants in Poland.
Methods: In this time-series study, the risk of hospital admission due to IHD over 3 days from exposure to several air pollutants was evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!