Solid Electrolyte Bimodal Grain Structures for Improved Cycling Performance.

Adv Mater

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.

Published: May 2024

The application of solid-state electrolytes in Li batteries is hampered by the occurrence of Li-dendrite-caused short circuits. To avoid cell failure, the electrolytes can only be stressed with rather low current densities, severely restricting their performance. As grain size and pore distributions significantly affect dendrite growth in ceramic electrolytes such as LiLaZrO and its variants; here, a "detour and buffer" strategy to bring the superiority of both coarse and fine grains into play, is proposed. To validate the mechanism, a coarse/fine bimodal grain microstructure is obtained by seeding unpulverized large particles in the green body. The rearrangement of coarse grains and fine pores is fine-tuned by changing the ratio of pulverized and unpulverized powders. The optimized bimodal microstructure, obtained when the two powders are equally mixed, allows, without extra interface decoration, cycling for over 2000 h as the current density is increased from 1.0 mA·cm, and gradually, up to 2.0 mA·cm. The "detour and buffer" effects are confirmed from postmortem analysis. The complex grain boundaries formed by fine grains discourage the direct infiltration of Li. Simultaneously, the coarse grains further increase the tortuosity of the Li path. This study sheds light on the microstructure optimization for the polycrystalline solid-state electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202309019DOI Listing

Publication Analysis

Top Keywords

bimodal grain
8
solid-state electrolytes
8
"detour buffer"
8
fine grains
8
coarse grains
8
solid electrolyte
4
electrolyte bimodal
4
grain
4
grain structures
4
structures improved
4

Similar Publications

In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve.

View Article and Find Full Text PDF

Quantitative Indicators of Microstructure and Texture Heterogeneity in Polycrystalline System.

Materials (Basel)

December 2024

Eötvös Lorand University (ELTE), Faculty of Informatics, Savaria Institute of Technology, Karolyi Gaspar tér 4, 9700 Szombathely, Hungary.

The microstructural features of polycrystals determine numerous properties, whereas the evolution of crystallographic texture is responsible for the anisotropy of particular properties. Therefore, it is of crucial importance to find proper quantitative indicators, which reflect the nature of microstructure and texture characteristics. This is partially performed by the assessment of the average grain size and texture intensity that provide basic information on the microstructural features evolved; however, often, the basic quantitative indicators are not capable of revealing the complete microstructural state especially when the system is highly heterogeneous.

View Article and Find Full Text PDF

380 MPa-30% grade biodegradable Zn-Mn-Mg-Ca alloy: Bimodal grain structure, large work-hardening strain, and enhanced biocompatibility.

Acta Biomater

December 2024

Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China. Electronic address:

Strain softening is a common issue for high-strength biodegradable Zn alloys. We developed Zn-0.6Mn-0.

View Article and Find Full Text PDF

One stone two birds: NH-UiO-66@MB-based bimodal aptasensor for sensitive and rapid detection of zearalenone in cereal products.

Talanta

April 2025

Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.

Zearalenone (ZEN), a prevalent mycotoxin found in cereal crops, poses a significant threat to food safety and human health. To address this issue, there is an urgent need for rapid, sensitive, and cost-effective detection methods. In this study, we developed a novel bimodal aptasensor based on NH-UiO-66@MB composites for ZEN detection.

View Article and Find Full Text PDF

Recent experimental investigations of grain size evolution in bridgmanite-ferropericlase assemblages have suggested very slow growth for these bimodal phases. Despite numerous speculations on grain size-dependent viscosity, a comprehensive test with realistic grain size evolution parameters compatible with the lower mantle has been lacking. In this study, we develop self-consistent 2-D spherical half-annulus geodynamic models of Earth's evolution using the finite volume code StagYY to assess the role of grain size on lower mantle viscosity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!