A pulsed excimer argon-fluorine laser was used to produce corneal incisions in vivo in a human cornea. Fourteen days after the laser surgery, the incisions were examined by light and transmission electron microscopy. There was good initial healing, with no inflammatory or immune reactions in the incisions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0002-9394(14)77770-0DOI Listing

Publication Analysis

Top Keywords

corneal wound
4
wound healing
4
healing excimer
4
excimer laser
4
laser keratotomy
4
keratotomy human
4
human eye
4
eye pulsed
4
pulsed excimer
4
excimer argon-fluorine
4

Similar Publications

Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.

Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Purpose: Current treatments for retinoblastoma facilitate globe salvage but can result in vitreoretinal disorders that may require surgery. There is controversy on surgical approaches in eyes with retinoblastoma. Here we describe a transcorneal vitrectomy approach that avoids the use of chemotherapy or cryotherapy.

View Article and Find Full Text PDF

Background: Orbital bullet injuries resulting from high-velocity trauma pose significant clinical challenges due to the potential for severe ocular and systemic complications. This meta-analysis consolidates the existing body of knowledge on direct orbital bullet injuries with respect to clinical outcomes, management strategies, and long-term effects.

Methods: The literature search was conducted by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, using databases such as PubMed and Scopus.

View Article and Find Full Text PDF

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!