AI Article Synopsis

  • Microplastics (MPs) from biosolids pose a risk to agricultural soils, and this study investigates their polymeric origins through spectroscopy techniques.
  • Using ATR-FTIR and NIR spectra of MPs and commercial plastics, researchers found strong correlations with polymers like LDPE, HDPE, PET, PS, PP, and PA.
  • The findings indicate that common sources of MPs in biosolids are consumer packaging materials and fibers from laundry and cleaning products.

Article Abstract

Biosolids are considered a potentially major input of microplastics (MPs) to agricultural soils. Our study aims to identify the polymeric origin of MPs extracted from biosolid samples by comparing their Attenuated Total Reflection (ATR) - Fourier-transform infrared (FTIR) spectra with the corresponding near-infrared (NIR) spectra. The reflectance spectra were preprocessed by Savitzky-Golay (SG), first derivative (FD) and compared with analogous spectra acquired on a set of fifty-two selected commercial plastic (SCP) materials collected from readily available products. According to the results portrayed in radar chart and built from both ATR-FTIR and NIR spectral datasets, the MPs showed high correlations with polymers such as polyethylene (LDPE, HDPE), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP) and polyamide (PA), determined in SCP samples. Each unknown MP sample had on average three or more links to several types of SCP, according to the correlation coefficients for each polymer ranging from 0.7 up to 1. The comparison analysis classified the majority of MPs as composed mainly by LDPE/HDPE, according to the top correlation coefficients (r > 0.90). PP and PET were better identified with NIR than ATR-FTIR. In contrast to ATR-FTIR analysis, NIR was unable to identify PS. Based on these results, the primary sources of MPs in the biosolids could be identified as discarded consumer packaging (containers, bags, bottles) and fibers from laundry, disposable glove, and cleaning cloth. SYNOPSIS: Microplastics (MPs) are considered contaminants of emerging concern. This study compares two simple and fast spectroscopy techniques to identify microplastics in the biosolid matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170215DOI Listing

Publication Analysis

Top Keywords

atr-ftir nir
8
microplastics mps
8
correlation coefficients
8
mps
6
nir
5
comparison atr-ftir
4
nir spectroscopy
4
spectroscopy identification
4
microplastics
4
identification microplastics
4

Similar Publications

Omnipotent antibacterial cotton fabrics with superhydrophobic and photothermal properties.

Int J Biol Macromol

December 2024

Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:

Due to the outbreak of global public health emergency, antibacterial fabrics such as face masks are in great demand. However, common antibacterial fabrics cannot kill bacteria in minutes and they are easy to be contaminated and lost biological activity. In this work, omnipotent antibacterial cotton fabrics with superhydrophobic and photothermal properties are developed by the combination of dopamine with copper sulfide (CuS) and silver nanoparticles on cotton fabrics, and post-modification with PDMS.

View Article and Find Full Text PDF

The rapid and accurate identification of pathogenic bacteria is crucial for combating the growing threat of antibiotic resistance, nosocomial infections, and food safety concerns. This study presents a novel and comprehensive comparison of two vibrational spectroscopic techniques - attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and a low-cost miniature near-infrared (NIR) spectrometer - for distinguishing Gram-positive and Gram-negative bacterial samples grown using the same stock media solution. This is the first report of NIR spectroscopy being applied to differentiate Gram-positive and Gram-negative bacteria, as well as the first direct comparison of ATR-FTIR and NIR for the combined multimodal analysis of clinical bacterial isolates.

View Article and Find Full Text PDF

Vitamin D3 is a crucial fat-soluble pro-hormone essential for bolstering bone health and fortifying immune responses within the human body. Orodispersible films (ODFs) serve as a noteworthy formulation strategically designed to enhance the rapid dissolution of vitamin D, thereby facilitating efficient absorption in patients. This innovative approach not only streamlines the assimilation process but also plays a pivotal role in optimizing patient compliance and therapeutic outcomes.

View Article and Find Full Text PDF

The taste and aroma of edible mushrooms, which is a criterion of judgment for consumer purchases, are influenced by amino acids and their metabolites. Sixty-eight amino acids and their metabolites were identified using liquid chromatography mass spectrometry (LC-MS), and 16 critical marker components were screened. The chemical composition of different species of boletes was characterized by two-dimensional correlation spectroscopy (2DCOS) to determine the sequence of molecular vibrations or group changes.

View Article and Find Full Text PDF

The dataset contains Fourier-transform infrared (FTIR) spectroscopic analysis of fuels in maritime cases and biodiesel-diesel blends B7 and B10 from Malaysia. Fuels in maritime cases were donated by Agensi Penguatkuasaan Maritim Malaysia (APMM) in March 2023. The crime-related oil samples originated from maritime crime scenes located within Terengganu and Johor, Malaysia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!