In this study, carbon dots (CDs)-encapsulated luminescent metal-organic frameworks@surface molecularly imprinted polymer (CDs@MOF@SMIP) was facilely prepared and applied as fluorescent probe for specific identification and sensitive detection of chloramphenicol (CAP) in food. Fluorescent CDs, serving as signal tags, were encapsulated within metal-organic backbones (ZIF-8), yielding luminescent MOF materials (CDs@ZIF-8). The synthesized CDs, CDs@ZIF-8 and CDs@ZIF-8@SMIP were investigated by morphological and structural characterizations (UV-Vis, XRD, FT-IR, BET, TEM). The CDs@ZIF-8@SMIP probe was demonstrated to have remarkable selectivity and sensitivity towards CAP. Its fluorescence decreased linearly with CAP concentration from 0.323 μg L (0.001 μM) to 8075.0 μg L (25.0 μM), featuring a low detection limit of 0.08 μg L. The CDs@ZIF-8@SMIP-based fluorescence strategy achieved satisfactory recoveries (95.5 % - 101.0 %) in CAP-spiked commercial foods with RSD < 4.4 % (n = 3). These results indicate that this method can effectively detect trace CAP in food matrices and has broad application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.138461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!