Lipid is an important precursor for volatile flavor formation, but it is not clear how to study the reactions involved in forming key volatile flavor compounds in peanut oil. In this paper, we innovatively established a flavor research model to investigate the contribution of different chemical reactions to the aroma compounds of peanut oil. The results showed that lipid participation in thermal reactions is necessary for forming major aroma compounds in hot-pressed peanut oil. Compared to the Maillard reaction, the lipid oxidation-Maillard reaction produces more compounds with 46 volatile substances identified. During the heating process, six new key substances were formed and the level of unsaturated fatty acids decreased by 7.28%. Among them, linoleic acid may be an important precursor for the formation of aroma components of hot-pressed peanut oil. Our study could provide theoretical guidance for understanding the volatile flavor mechanism of peanut oil and improving volatile flavor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.138496 | DOI Listing |
Plant J
January 2025
Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
Peanut ( L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground.
View Article and Find Full Text PDFFront Genome Ed
January 2025
Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.
Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Department of Pathology, Pediatric and Perinatal Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone. Sustanon, dissolved in peanut oil, is an AAS used by athletes to build muscle mass. This study aims to examine the effects of Sustanon on male reproductive health.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!