β-Glucan is a homopolymer with a backbone of β-1,3-linked glucose residues. The solubility and biological activity of β-glucan can be influenced by the length of the backbone and the length/interval of the β-1,6 branches. Dectin-1 is crucial in innate immunity through its binding to exogenous β-glucans. However, there are few quantitative binding affinities available and there is no comprehensive comparative analysis of the binding of Dectin-1 to insoluble β-glucans. Here, we have developed a simple binding assay for the interaction between Dectin-1 lectin domain (Dectin-1 CTLD) and insoluble β-glucans. We utilized the paramylon particle as a model of insoluble β-glucans. Dectin-1 CTLD bound to paramylon (particle size 3.1 μm) was separated from unbound Dectin-1 CTLD by centrifugation using a membrane filter (pore size 0.2 μm). The protein in the filtrate was quantified by SDS-PAGE and densitometry. The amount decreased in proportion to the amount of paramylon in the mixture. A control experiment using the Dectin-1 CTLD inactive mutant W221A showed that the mutant passes through the filter without binding paramylon. These results are evidence of site-specific binding of Dectin-1 CTLD to paramylon and demonstrate that the separation of paramylon-bound/unbound Dectin-1 CTLD is achievable through centrifugation using a filter. The assay was extended to other insoluble β-glucans including curdlan. Additionally, it can be utilized in competitive inhibition experiments with soluble short-chain β-glucans such as laminarin. The assay system allows for quantitative comparison of the affinities between insoluble and soluble β-glucans and Dectin-1 CTLD, and should be useful because of its low-tech convenience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2024.109041 | DOI Listing |
EMBO Rep
December 2024
Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
Carbohydr Res
February 2024
Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan. Electronic address:
β-Glucan is a homopolymer with a backbone of β-1,3-linked glucose residues. The solubility and biological activity of β-glucan can be influenced by the length of the backbone and the length/interval of the β-1,6 branches. Dectin-1 is crucial in innate immunity through its binding to exogenous β-glucans.
View Article and Find Full Text PDFCarbohydr Polym
June 2022
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
By combining molecular dynamic (MD) simulation and docking techniques, we systematically investigated the recognition between linear β-(1 → 3)-glucan (bglc) and Dectin-1. The binding structure exhibits apparent endo-type recognition between the C-type lectin-like domain (CTLD) groove formed by Trp221, His223, Tyr228, as well as other residues around them, and the conformational patterns of triple-helix bglc. Trp221, His223, and Tyr228 play an important role in stabilizing the recognition complex through forming a simple but fixed hydrogen bond network with the C and C hydroxyls.
View Article and Find Full Text PDFFront Immunol
September 2020
Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.
Immune-modulatory effects of β-glucans are generally considered beneficial to fish health. Despite the frequent application of β-glucans in aquaculture practice, the exact receptors and downstream signalling remains to be described for fish. In mammals, Dectin-1 is a member of the C-type lectin receptor (CLR) family and the best-described receptor for β-glucans.
View Article and Find Full Text PDFGlycobiology
August 2018
Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama, Japan.
Dectin-1 is a C-type lectin-like pattern recognition receptor that recognizes β(1-3)-glucans present on non-self pathogens. It is of great importance in innate immunity to understand the mechanism whereby Dectin-1 senses β(1-3)-glucans and induces intracellular signaling. In this study, we characterize the ligand binding and ligand-induced oligomerization of murine Dectin-1 using its C-type lectin-like domain (CTLD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!