AI Article Synopsis

  • Pseudorabies virus (PRV) is a neurotropic virus that can infect various mammals, and its activity is normally suppressed in hosts post-infection, but stress can reactivate it through increased glucocorticoid levels.
  • Researchers conducted experiments on rat PC-12 cells and found that administration of the corticosteroid dexamethasone (DEX) could overcome the relative repression of PRV, revealing differing profiles of microRNA and mRNA in cells based on PRV and DEX treatment.
  • The study identified a specific microRNA, miRNA-194-5p, that negatively regulates heparin-binding EGF-like growth factor (Hbegf), and showed that altering levels of miRNA-194-5

Article Abstract

Pseudorabies virus (PRV) is a neurotropic virus, which infects a wide range of mammals. The activity of PRV is gradually suppressed in hosts that have tolerated the primary infection. Increased glucocorticoid levels resulting from stressful stimuli overcome repression of PRV activity. However, the host cell mechanism involved in the activation processes under stressful conditions remains unclear. In this study, infection of rat PC-12 pheochromocytoma cells with neuronal properties using PRV at a multiplicity of infection (MOI) = 1 for 24 h made the activity of PRV be the relatively repressed state, and then incubation with 0.5 μM of the corticosteroid dexamethasone (DEX) for 4 h overcomes the relative repression of PRV activity. RNA-seq deep sequencing and bioinformatics analyses revealed different microRNA and mRNA profiles of PC-12 cells with/without PRV and/or DEX treatment. qRT-PCR and western blot analyses confirmed the negative regulatory relationship of miRNA-194-5p and its target heparin-binding EGF-like growth factor (Hbegf); a dual-luciferase reporter assay revealed that Hbegf is directly targeted by miRNA-194-5p. Further, miRNA-194-5p mock transfection contributed to PRV activation, Hbegf was downregulated in DEX-treated PRV infection cells, and Hbegf overexpression contributed to returning activated PRV to the repression state. Moreover, miRNA-194-5p overexpression resulted in reduced levels of HBEGF, c-JUN, and p-EGFR, whereas Hbegf overexpression suppressed the reduction caused by miRNA-194-5p overexpression. Overall, this study is the first to report that changes in the miR-194-5p-HBEGF/EGFR pathway in neurons are involved in DEX-induced activation of PRV, laying a foundation for the clinical prevention of stress-induced PRV activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2023.109974DOI Listing

Publication Analysis

Top Keywords

prv
12
egf-like growth
8
growth factor
8
pseudorabies virus
8
pheochromocytoma cells
8
activity prv
8
repression prv
8
prv activity
8
prv activation
8
hbegf overexpression
8

Similar Publications

PRRSV-2 nsp2 Ignites NLRP3 inflammasome through IKKβ-dependent dispersed trans-Golgi network translocation.

PLoS Pathog

January 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear.

View Article and Find Full Text PDF

This case report highlights a potential vaccine safety concern associated with the Pseudorabies virus (PRV) live vaccine, which warrants further investigation for comprehensive understanding. Vaccine-induced immune thrombotic thrombocytopenia (VITT), a novel syndrome of adverse events following adenovirus vector COVID-19 vaccines, was observed after vaccination with Zoetis PR-VAC PLUS. This led to a 100% morbidity and high mortality among PRV-free Danish purebred pigs from Danish Genetics Co.

View Article and Find Full Text PDF

HDAC6 Facilitates PRV and VSV Infection by Inhibiting Type I Interferon Production.

Viruses

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.

View Article and Find Full Text PDF

Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig.

Animals (Basel)

January 2025

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.

In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples.

View Article and Find Full Text PDF

Distinct effects of glucocorticoid on pseudorabies virus infection in neuron-like and epithelial cells.

J Virol

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.

Pseudorabies virus (PRV) is a porcine neurotropic alphaherpesvirus that infects peripheral tissues of its host, spreads into the nervous system, and establishes a life-long latency in neuronal cells. During productive infection, PRV replicates rapidly and causes pseudorabies or Aujeszky's disease. Reactivation from latent infection in the nervous system may lead to anterograde axonal transport of progeny virions, leading to recurrent infection of the epithelial layer and virus spread.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!