Hydrazine-mediated formation of 1,4-phthalazinedione analogues from phthalimide-like components has been utilized to formulate fluorescent probe . A turn-on fluorescent process has been evaluated to detect hydrazine in a highly selective manner by a small molecular probe and its homopolymer . Both these probes have been evaluated as excellent candidates for nanomolar level detection of hydrazine with a time frame of <15 min, which is rapid in terms of real application. Due to the reaction-based detection process, we have achieved high selectivity for our probes toward the identification of hydrazine in the presence of metal ions, anions, amino acids, and various amines. Limit of detection values are 16 and 35 nM for and , respectively, which are well below the permissible limit given by WHO and EPA. has been utilized to detect hydrazine in environmental water samples, soil samples, and biological samples to establish the applicability of our probes in real-field scenarios. We introduce an easy-to-synthesize, cheap, and small molecular probe and its polymer for ultrafast, highly selective, and sensitive detection of hydrazine in all possible mediums to counter the hydrazine toxicity through fluorescence turn-on signal output.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c01079DOI Listing

Publication Analysis

Top Keywords

detection hydrazine
8
unique reaction-based
4
reaction-based polynorbornene
4
polynorbornene sensing
4
sensing probes
4
probes ultrasensitive
4
ultrasensitive detection
4
hydrazine environmental
4
environmental biological
4
biological systems
4

Similar Publications

Real-time monitoring of ONOO⁻ in cerebral ischemia-reperfusion injury mouse models using a hydrazine-based NIR fluorescent probe.

Redox Biol

January 2025

Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China. Electronic address:

Accurate and selective techniques for visualizing endogenous peroxynitrite (ONOO) in cerebral ischemia-reperfusion injury (CIRI) models are essential for understanding its complex pathological processes. Here, we introduced a longwave fluorescent probe TJO for detecting ONOO rapidly and sensitively, with a low detection limit of 91 nM. Furthermore, TJO exhibits excellent fluorescence imaging capabilities, enabling detailed visualization of ONOO⁻ in CIRI mice model.

View Article and Find Full Text PDF

Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.

View Article and Find Full Text PDF

In this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.

View Article and Find Full Text PDF

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Hydrazine (NH) and hydrogen sulfide (HS) are environmental contaminants that adversely affect human health. Fluorescence-based detection methods for these analytes utilize their nucleophilicity and reducing ability. Therefore, fluorescent sensors capable of detecting and distinguishing hydrazine and HS are highly beneficial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!