Extraction, characterization, and therapeutic potential of Omega-3 fatty acids from skin.

3 Biotech

Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India.

Published: February 2024

This study provides the fatty acid profile, presence of Omega 3 fatty acids (ω3FAs) and therapeutic potential of the skin of Garfish (), a highly nutritious fish. The ω3FAs were obtained using the urea crystallization method and confirmed by UV VIS spectroscopy, HPLC, FT-IR, and NMR. Additionally, the therapeutic potential of the ω3FAs was assessed through antioxidant, antimicrobial, antibiofilm, and toxicity assays. The oil extracted from Garfish skin (GS) predominantly contains ω3FAs, palmitic acids, and oleic acids. The ω3FAs exhibit high anti-free radical activity and ferric reducing activity. It reduces nitric oxide production as well as lipid peroxidation under certain time. They also demonstrate effective antibacterial activity against and . The biofilm formation is efficiently reduced by ω3FAs and eradication effects on biofilm are higher at 4000 µg/mL of concentration. When tested against brine shrimp larvae, ω3FAs were found to be non-toxic. The study indicates that GS skin oil contains a significant amount of omega-3 fatty acids and has potential therapeutic benefits due to its antioxidant and antibacterial properties, without causing any toxic effects. Omega-3 fatty acids have the potential to enhance the treatment of infections caused by harmful bacteria and their biofilm formation. Further research is needed to understand how omega-3 fatty acids work to kill bacteria and how they affect bacterial gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796888PMC
http://dx.doi.org/10.1007/s13205-023-03885-5DOI Listing

Publication Analysis

Top Keywords

fatty acids
20
therapeutic potential
12
omega-3 fatty
12
acids ω3fas
8
acids
7
ω3fas
7
fatty
6
potential
5
extraction characterization
4
therapeutic
4

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Phytochemical composition, antioxidant and antimicrobial activities of Delile ex Godr flowers extracts.

Nat Prod Res

January 2025

Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.

The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.

View Article and Find Full Text PDF

In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!