Scene-dependent adaptive compressive sensing (CS) has been a long pursuing goal that has huge potential to significantly improve the performance of CS. However, with no access to the ground truth, how to design the scene-dependent adaptive strategy is still an open problem. In this paper, a restricted isometry property (RIP) condition-based error-clamping is proposed, which could directly predict the reconstruction error, i.e., the difference between the current-stage reconstructed image and the ground truth image, and adaptively allocate more samples to regions with larger reconstruction error at the next sampling stage. Furthermore, we propose a CS reconstruction network composed of Progressively inverse transform and Alternating Bi-directional Multi-grid Network, named PiABM-Net, that could efficiently utilize the multi-scale information for reconstructing the target image. The effectiveness of the proposed adaptive and cascaded CS method is demonstrated with extensive quantitative and qualitative experiments, compared with the state-of-the-art CS algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3357704DOI Listing

Publication Analysis

Top Keywords

adaptive compressive
8
compressive sensing
8
restricted isometry
8
scene-dependent adaptive
8
ground truth
8
reconstruction error
8
adacs adaptive
4
sensing restricted
4
isometry property-based
4
property-based error-clamping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!