Background: Merkel cell carcinoma (MCC) is an aggressive malignant neuroendocrine tumour. There are two subsets of MCC, one related to Merkel cell polyomavirus (MCPyV) and the other to ultraviolet radiation (UVR). MCPyV-positive and MCPyV-negative MCCs have been considered to be different tumours, as the former harbour few DNA mutations and are not related to UVR, and the latter usually arise in sun-exposed areas and may be found in conjunction with other keratinocytic tumours, mostly squamous cell carcinomas. Two viral oncoproteins, large T antigen (LT; coded by MCPyV_gp3) and small T antigen (sT; coded by MCPyV_gp4), promote different carcinogenic pathways.

Objectives: To determine which genes are differentially expressed in MCPyV-positive and MCPyV-negative MCC; to describe the mutational burden and the most frequently mutated genes in both MCC subtypes; and to identify the clinical and molecular factors that may be related to patient survival.

Methods: Ninety-two patients with a diagnosis of MCC were identified from the medical databases of participating centres. To study gene expression, a customized panel of 172 genes was developed. Gene expression profiling was performed with nCounter technology. For mutational studies, a customized panel of 26 genes was designed. Somatic single nucleotide variants (SNVs) were identified following the GATK Best Practices workflow for somatic mutations.

Results: The expression of LT enabled the series to be divided into two groups (LT positive, n = 55; LT negative, n = 37). Genes differentially expressed in LT-negative patients were related to epithelial differentiation, especially SOX9, or proliferation and the cell cycle (MYC, CDK6), among others. Congruently, LT displayed lower expression in SOX9-positive patients, and differentially expressed genes in SOX9-positive patients were related to epithelial/squamous differentiation. In LT-positive patients, the mean SNV frequency was 4.3; in LT-negative patients it was 10 (P = 0.03). On multivariate survival analysis, the expression of SNAI1 [hazard ratio (HR) 1.046, 95% confidence interval (CI) 1.007-1.086; P = 0.02] and CDK6 (HR 1.049, 95% CI 1.020-1.080; P = 0.001) were identified as risk factors.

Conclusions: Tumours with weak LT expression tend to co-express genes related to squamous differentiation and the cell cycle, and to have a higher mutational burden. These findings are congruent with those of earlier studies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjd/ljae033DOI Listing

Publication Analysis

Top Keywords

merkel cell
16
mcpyv-positive mcpyv-negative
12
differentially expressed
12
cell polyomavirus
8
cell carcinoma
8
antigen coded
8
genes differentially
8
mutational burden
8
gene expression
8
customized panel
8

Similar Publications

Merkel cell carcinoma (MCC) is a skin cancer that arises due to either Merkel cell polyomavirus infection (MCPyV) or ultraviolet (UV) radiation exposure, presenting primarily in the head and neck region of fair-skinned males. The recent success of PD-(L)1 immune checkpoint inhibitors (ICIs) in locally advanced/metastatic MCC, with an objective response rate (ORR) around 50% and improved survival, as a first-line treatment has moved ICIs to the forefront of therapy for MCC and generated interest in identifying biomarkers to predict clinical response. The MCC tumour microenvironment (TME) contains various components of the adaptive and innate immune system.

View Article and Find Full Text PDF

Background: Neuroendocrine neoplasias grade 3 (NEN G3) are rare tumors with poor prognosis and no established second-line therapy. The role of immune checkpoint blockade in these aggressive tumors remains unclear.

Methods: The phase II AVENEC study evaluated the effect of avelumab (AVE, 10 mg/kg IV Q2W) in 60 patients with well-differentiated high-grade neuroendocrine tumors (NET G3, N=22) or poorly differentiated neuroendocrine carcinomas (NEC, N=38) progressing after ≥ one prior chemotherapy (excluding Merkel cell and small-cell lung cancer).

View Article and Find Full Text PDF

A hybrid machine learning approach for the personalized prognostication of aggressive skin cancers.

NPJ Digit Med

January 2025

Mike Toth Head and Neck Cancer Research Center, Division of Surgical Oncology, Department of Otolaryngology-Head and Neck Surgery, Mass Eye and Ear, Boston, MA, USA.

Accurate prognostication guides optimal clinical management in skin cancer. Merkel cell carcinoma (MCC) is the most aggressive form of skin cancer that often presents in advanced stages and is associated with poor survival rates. There are no personalized prognostic tools in use in MCC.

View Article and Find Full Text PDF

Merkel cell carcinoma (MCC) and melanoma are important contributors to skin cancer mortality in the United States. We evaluated their epidemiology using US cancer registry data. During 2000-2021, 19,444 MCCs and 646,619 melanomas of the skin were diagnosed.

View Article and Find Full Text PDF

Sentinel Lymph Node Biopsy: Is There a Role in Non-Melanoma Skin Cancer? A Systematic Review.

Cancers (Basel)

December 2024

Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy.

Sentinel Lymph Node Biopsy (SLNB) aims at identifying clinically occult nodal metastases. It is the standard staging procedure for patients with T1b to T4 primary cutaneous melanoma. Moreover, it is recommended whenever the risk of a positive SLNB is >5%, according to the National Comprehensive Cancer Network Melanoma guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!