Calcium-ion batteries offer many advantages to the current lithium-ion technology in terms of cost, sourcing materials, and potential for higher energy density. However, calcium-ion batteries suffer from lack of a stable electrolyte due to reduction from the anode. Building off of our recent work investigating the stability of two representative electrolyte solvents, tetrahydrofuran (THF) and ethylene carbonate (EC), we now use molecular dynamics (AIMD) and the non-equilibrium Green's function technique in conjunction with density functional theory (NEGF-DFT) to investigate charge transport as the solvent molecules dynamically interact with the anode surface. THF maintained a relatively consistent conductance throughout the trajectory, although some jumps in the conductance were attributed to THF molecular rearrangement. EC exhibited a large amount of molecular decomposition, and a corresponding decrease in conductance of several orders of magnitude was noted. Through this analysis, we show that molecular decomposition and early-stage solid-electrolyte interphase (SEI) formation plays a major role in the robustness of charge transport as the system evolves in time and with temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04113a | DOI Listing |
Sci Total Environ
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China.
The recycling of spent lithium-ion batteries has become a common concern of the whole society, with a large number of studies on recycling management and recycling technology, but there is relatively little study on the pollution release during the recycling process. Pollution will restrict the healthy development of the recycling industry, which makes relevant research very significant. This paper monitored and analyzed the battery recycling pretreatment process in a formal factory, and studied the pollution characteristics of particulate matter, heavy metals, and microplastics under different treatment stages.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
The interfacial reaction of a silicon anode is very complex, which is closely related with the electrolyte components and surface elements' chemical status of the Si anode. It is crucial to elucidate the formation mechanism of the solid electrolyte interphase (SEI) on the silicon anode, which promotes the development of a stable SEI. However, the interface reaction mechanism on the silicon surface is closely related to the surface components.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Gels
December 2024
School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!