Epilepsy is a common neurological disorder characterized by transient brain dysfunction, attributed to a multitude of factors. The purpose of this study is to explore whether neurodegenerative diseases, specifically Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), have a causal effect on epilepsy. Mendelian randomization (MR) methods were used to analyze the causal association between neurodegenerative diseases (AD, PD, ALS, and MS) and epilepsy based on single nucleotide polymorphisms from genome-wide association studies, including inverse-variance weighted, weighted median, MR-Egger, and weighted mode methods. The reliability and stability of the MR analysis results were assessed by the MR-Egger intercept, MR-PRESSO, and heterogeneity tests. Forty-three SNPs were selected for the MR analysis of MS and epilepsy. The inverse-variance weighted method showed a significant causal association between MS and increased risk of epilepsy (odds ratio 1.046; 95% confidence interval 1.001-1.093; P = 0.043). However, AD (P = 0.986), PD (P = 0.894), and ALS (P = 0.533) were not causally associated with epilepsy. Sensitivity analysis showed that the results were robust. The MR study confirmed the causal relationship between genetically predicted MS and epilepsy but did not support the causal relationship between genetically predicted AD, PD, and ALS on epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-03955-6DOI Listing

Publication Analysis

Top Keywords

neurodegenerative diseases
12
epilepsy
9
association neurodegenerative
8
increased risk
8
risk epilepsy
8
epilepsy based
8
based single
8
single nucleotide
8
nucleotide polymorphisms
8
mendelian randomization
8

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Age-related cognitive impairment and dementia pose a significant global health, social, and economic challenge. While Alzheimer's disease (AD) has historically been viewed as the leading cause of dementia, recent evidence reveals the considerable impact of vascular cognitive impairment and dementia (VCID), which now accounts for nearly half of all dementia cases. The Mediterranean diet-characterized by high consumption of fruits, vegetables, whole grains, fish, and olive oil-has been widely recognized for its cardiovascular benefits and may also reduce the risk of cognitive decline and dementia.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Neuroprotective Indole Alkaloids from the Soil-Derived Fungus sp. XZ8.

J Nat Prod

January 2025

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.

A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.

View Article and Find Full Text PDF

From Antipsychotic to Neuroprotective: Computational Repurposing of Fluspirilene as a Potential PDE5 Inhibitor for Alzheimer's Disease.

J Comput Chem

January 2025

Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia.

Phosphodiesterase 5 (PDE5) inhibitors have shown great potential in treating Alzheimer's disease by improving memory and cognitive function. In this study, we evaluated fluspirilene, a drug commonly used to treat schizophrenia, as a potential PDE5 inhibitor using computational methods. Molecular docking revealed that fluspirilene binds strongly to PDE5, supported by hydrophobic and aromatic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!