Recent progress in beryllium organometallic chemistry.

Chem Commun (Camb)

Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, 453552, India.

Published: February 2024

Beryllium possesses a unique amalgamation of characteristics, its electronegativity included, that not only make it a vital component in a wide range of technical sectors and consumer industries, but also make it an interesting candidate for forming covalently bonded compounds. However, the extremely toxic nature of beryllium, which can cause chronic beryllium disease, has limited the exploration of its chemistry, making beryllium one of the least studied (non-radioactive) elements. The development of selective chelating ligands, sterically encumbered substituents and, moreover, the boom of N-heterocyclic carbenes in organometallic chemistry and main group chemistry has revived the interest in beryllium chemistry. Therefore, some quite remarkable progress in the coordination and organometallic chemistry of beryllium has been made in the last two decades. For example, low oxidation state beryllium compounds, antiaromatic/aromatic beryllium compounds, where beryllium is involved in π-electron delocalization, and the isolation of beryllium-beryllium bonded species have all been achieved. This article provides an oversight over the recent developments in the organometallic chemistry of beryllium.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc04844fDOI Listing

Publication Analysis

Top Keywords

organometallic chemistry
16
chemistry beryllium
12
beryllium
10
beryllium compounds
8
chemistry
7
progress beryllium
4
organometallic
4
beryllium organometallic
4
beryllium possesses
4
possesses unique
4

Similar Publications

The synthesis of perfluoroalkylated fullerenes (PFAFs) holds significant importance due to their enhanced molecular stability, increased lipophilicity, and high electron affinity. Herein, we report a copper-catalyzed multicomponent reaction conducted under aerobic conditions, which enables the production of highly soluble PFAFs with half-wave reduction potentials similar to those of C. Furthermore, the challenges posed by C-F coupling in carbon signal assignment were addressed through fluorine-decoupled carbon spectroscopy, facilitating precise structural characterization of the perfluoroalkyl moieties.

View Article and Find Full Text PDF

Probing the nature of intramolecular (sp)C-H⋯Cu(I) interactions in organo thione copper(I) cages.

Dalton Trans

January 2025

Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.

The assessment of copper(I) and hydrogen interactions is challenging and should be approached with caution. In this paper, we report an assessment of multiple copper(I) and hydrogen interactions in two unique copper(I) thione cages. Copper(I) -heterocyclic thione cages [{Cu(-Br)(-L1)}] (1) and [{Cu(-I)(-L1)}] (2) were synthesized and characterized with proximity enforced Cu⋯H interactions.

View Article and Find Full Text PDF

Switching the location of metal atoms or ions in a molecule has been of great interest as a behavior of molecular machines. We describe herein that the reversible metal translocation can be coupled with the ligand-binding/release of organometallic complexes. The two rhodium moieties sandwiched between arylpolyene ligands exhibit metal-assembly and disassembly through reversible migration between the arene site and the olefin site, in response to the association and dissociation of additional ligands.

View Article and Find Full Text PDF

While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.

View Article and Find Full Text PDF

Single-molecule Magnet Properties of Silole- and Stannole-ligated Erbium Cyclo-octatetraenyl Sandwich Complexes.

Chemistry

January 2025

University of Sussex, Department of Chemistry, School of Life Sciences, BN1 9QJ, Brighton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The synthesis, structures and magnetic properties of an η5-silole complex and an η5-stannole complex of erbium are reported. The sandwich complex anions [(η5-CpSi)Er(η8-COT)]- and [(η5-CpSn)Er(η8-COT)]-, where CpSi is [SiC4-2,5-(SiMe3)2-3,4-Ph2]2- (1Si), CpSn is [SnC4-2,5-(SiMe3)2-3,4-Me2]2- (1Sn) and COT = cyclo-octatetraenyl, were obtained as their [K(2.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!