Emerging Pathophysiological Roles of Ketone Bodies.

Physiology (Bethesda)

Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan.

Published: May 2024

AI Article Synopsis

  • The discovery of insulin around a century ago significantly improved diabetes management and reduced life-threatening complications like ketoacidosis, greatly benefiting patient health.
  • There's a lingering negativity towards ketone bodies due to their association with ketoacidosis, even though they were once valued as crucial energy sources during fasting and exercise.
  • Recent research is shifting perspectives on ketone bodies, exploring their potential roles in promoting longevity and their effects on various organs, including the heart, kidneys, muscles, and brain, as well as potential implications for cancer.

Article Abstract

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiol.00031.2023DOI Listing

Publication Analysis

Top Keywords

ketone bodies
24
roles ketone
8
potential impact
8
ketone
6
bodies
6
emerging pathophysiological
4
pathophysiological roles
4
bodies discovery
4
discovery insulin
4
insulin century
4

Similar Publications

Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review.

Nutrients

December 2024

Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.

Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders.

Molecules

December 2024

Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan.

Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate.

View Article and Find Full Text PDF

Induction of Erythropoietin by dietary Medium-Chain Triacylglycerol in Humans.

Am J Physiol Endocrinol Metab

January 2025

The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations, however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid (MCFA)-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration.

View Article and Find Full Text PDF

Background: There is a lack of data on the validation and diagnostic performance of the Freestyle Optium Neo-H (Freestyle) and Centrivet GK (Centrivet) devices for the diagnosis of hypoglycaemia, hyperglycaemia and hyperketonaemia in goats.

Objectives: The aim of the present study was to validate the Freestyle and Centrivet for the analysis of whole blood beta-hydroxybutyric acid (BHBA) and to validate the Freestyle for the analysis of whole blood glucose concentrations using the reference method (RM) in goat blood collected from the jugular and ear veins.

Methods: Venous blood samples were utilised to assess glucose and BHBA concentrations using the Freestyle, Centrivet and RM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!