The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C ( gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800918 | PMC |
http://dx.doi.org/10.3389/fonc.2023.1324013 | DOI Listing |
Brain Behav
January 2025
Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.
Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.
J Med Genet
January 2025
Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
Background: Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.
View Article and Find Full Text PDFMol Genet Metab
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong, China.
The 3-methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of inborn errors of metabolism defined biochemically by detectable elevation of 3-methylglutaconic acid (3-MGA) in the urine. In type 1 (or primary) 3-MGA-uria, distal defects in the leucine catabolism pathway directly cause this elevation. Secondary 3-MGA-uria syndromes, however, are unrelated to leucine metabolism-specific defects but share a common biochemical phenotype of elevated 3-MGA.
View Article and Find Full Text PDFPLoS Genet
January 2025
Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
Recent statistical approaches have shown that the set of all available genetic variants explains considerably more phenotypic variance of complex traits and diseases than the individual variants that are robustly associated with these phenotypes. However, rapidly increasing sample sizes constantly improve detection and prioritization of individual variants driving the associations between genomic regions and phenotypes. Therefore, it is useful to routinely estimate how much phenotypic variance the detected variants explain for each region by taking into account the correlation structure of variants and the uncertainty in their causal status.
View Article and Find Full Text PDFHum Genet
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!