AI Article Synopsis

  • The CRISPR-Cas9 system is a powerful genome-editing tool that can help address various genetic disorders by precisely targeting and modifying DNA.
  • It consists of a single-guide RNA (sgRNA) that directs the Cas9 protein to specific DNA sequences, allowing for targeted editing.
  • A major concern with CRISPR-Cas9 is off-target effects, where unintended DNA modifications occur, which can undermine its effectiveness and reliability; this review discusses recent improvements aimed at minimizing these off-target effects.

Article Abstract

The CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)) and the associated protein (Cas9) system, a young but well-studied genome-editing tool, holds plausible solutions to a wide range of genetic disorders. The single-guide RNA (sgRNA) with a 20-base user-defined spacer sequence and the Cas9 endonuclease form the core of the CRISPR-Cas9 system. This sgRNA can direct the Cas9 nuclease to any genomic region that includes a protospacer adjacent motif (PAM) just downstream and matches the spacer sequence. The current challenge in the clinical applications of CRISPR-Cas9 genome-editing technology is the potential off-target effects that can cause DNA cleavage at the incorrect sites. Off-target genome editing confuses and diminishes the therapeutic potential of CRISPR-Cas9 in addition to potentially casting doubt on scientific findings regarding the activities of genes. In this review, we summarize the recent technological advancements in reducing the off-target effect of CRISPR-Cas9 genome editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802171PMC
http://dx.doi.org/10.2147/BTT.S429411DOI Listing

Publication Analysis

Top Keywords

genome editing
12
advancements reducing
8
reducing off-target
8
off-target crispr-cas9
8
crispr-cas9 genome
8
spacer sequence
8
crispr-cas9
5
off-target
4
editing crispr-cas
4
crispr-cas clustered
4

Similar Publications

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Targeted deaminase-free T-to-G and C-to-K base editing in rice by fused human uracil DNA glycosylase variants.

Plant Biotechnol J

January 2025

Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, China.

View Article and Find Full Text PDF

Drosophila CG11700 may not affect male fecundity-lifespan tradeoff as previously reported.

Mol Biol Evol

January 2025

Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

Our recent investigations on the function of Drosophila CG11700 and CG32744 (Ubi-p5E) genes using CRISPR/Cas9 deletion technology could not repeat or confirm the results on CG11700 shown in our previous study which was based on P-element excision assay (Zhan et al. 2012). Here by CRISPR/Cas9 editing, we generated mutants of CG32744 with the whole gene body fully deleted from the genome, and truncated mutants of CG11700 with N-terminal 103 aa deleted out of its total 301 aa peptide sequence.

View Article and Find Full Text PDF

This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.

View Article and Find Full Text PDF

ABE-Mediated Cardiac Gene Silencing via Single AAVs Requires DNA Accessibility.

Circ Res

January 2025

School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China. (Z.L., L.Y., Y.Y., J.L., Z.C., C.G., Y.G.).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!