Photon-counting micro computed tomography (micro-CT) offers new potential in preclinical imaging, particularly in distinguishing materials. It becomes especially helpful when combined with contrast agents, enabling the differentiation of tumors from surrounding tissues. There are mainly two types of contrast agents in the market for micro-CT: small molecule-based and nanoparticle-based. However, despite their widespread use in liver tumor studies, there is a notable gap in research on the application of these commercially available agents for photon-counting micro-CT in breast and ovarian tumors. Herein, we explored the effectiveness of these agents in differentiating tumor xenografts from various origins (AU565, MDA-MB-231, and SKOV-3) in nude mice, using photon-counting micro-CT. Specifically, ISOVUE-370 (a small molecule-based agent) and Exitrone Nano 12000 (a nanoparticle-based agent) were investigated in this context. To improve tumor visualization, we proposed a novel color visualization method for photon-counting micro-CT, which changes color tones to highlight contrast media distribution, offering a robust alternative to traditional material decomposition methods with less computational demand. Our experiments confirm its effectiveness, showing distinct enhancement characteristics for each contrast agent. Qualitative and quantitative analyses suggested that Exitrone Nano 12000 provides superior vasculature enhancement and better quantitative consistency across scans, while ISOVUE-370 gives more comprehensive tumor enhancement but with a significant variance between scans due to its short blood half-time. This variability leads to high sensitivity to timing and individual differences among mice. Further, a paired t-test on mean and standard deviation values within tumor volumes showed significant differences between the AU565 and SKOV-3 tumor models with the nanoparticle-based (-values < 0.02), attributable to their distinct vascularity, as confirmed by immunohistochemistry. These findings underscore the utility of photon-counting micro-CT in non-invasively assessing the morphology and anatomy of different tumor xenografts, which is crucial for tumor characterization and longitudinal monitoring of tumor development and response to treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802390PMC
http://dx.doi.org/10.1101/2024.01.03.574097DOI Listing

Publication Analysis

Top Keywords

photon-counting micro-ct
20
tumor
10
contrast agents
8
small molecule-based
8
tumor xenografts
8
exitrone nano
8
nano 12000
8
micro-ct
7
photon-counting
5
contrast-enhanced photon-counting
4

Similar Publications

Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.

View Article and Find Full Text PDF

3D printed biomaterial implants are revolutionizing personalized medicine for tissue repair, especially in orthopedics. In this study, a radiopaque bismuth oxide (BiO) doped polycaprolactone (PCL) composite is developed and implemented to enable the use of diagnostic X-ray technologies, especially spectral photon counting X-ray computed tomography (SPCCT), for comprehensive tissue engineering scaffold (TES) monitoring. PCL filament with homogeneous BiO nanoparticle (NP) dispersion (0.

View Article and Find Full Text PDF

Background: Crocodiles are semi-aquatic animals well adapted to hear both on land and under water. Currently, there is limited information on how their amphibious hearing is accomplished. Here, we describe, for the first time, the ear anatomy in the living crocodile using photon-counting detector computed tomography (PCD-CT) and 3D rendering.

View Article and Find Full Text PDF

Development of a Monte Carlo simulation platform for the systematic evaluation of photon-counting detector-based micro-CT.

Phys Med

October 2024

Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Electronic address:

Purpose: This study aimed to develop a photon-counting detector (PCD) based micro-CT simulation platform for assessing the performance of three different PCD sensor materials: cadmium telluride (CdTe), gallium arsenide (GaAs), and silicon (Si). The evaluation encompasses the components of primary and scatter signals, performance of imaging contrast agents, and detector efficiency.

Methods: Simulations were performed using the Geant4 Monte Carlo toolkit, and a micro-PCD-CT system was meticulously modeled based on realistic geometric parameters.

View Article and Find Full Text PDF

Investigating deep learning strategies for fast denoising of 5D cardiac photon-counting micro-CT images.

Phys Med Biol

September 2024

Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Box 3302, Durham, North Carolina, 27710-1000, UNITED STATES.

Photon-counting detectors (PCDs) for CT imaging use energy thresholds to simultaneously acquire projections at multiple energies, making them suitable for spectral imaging and material decomposition. Unfortunately, setting multiple energy thresholds results in noisy analytical reconstructions due to low photon counts in high-energy bins. Iterative reconstruction provides high quality photon-counting CT (PCCT) images but requires enormous computation time for 5D (3D + energy + time) in vivo cardiac imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!