A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence-based automated left ventricular mass quantification from non-contrast cardiac CT scans: correlation with contrast CT and cardiac MRI. | LitMetric

Background: Non-contrast CT scans are not used for evaluating left ventricle myocardial mass (LV mass), which is typically evaluated with contrast CT or cardiovascular magnetic resonance imaging (MRI). We assessed the feasibility of LV mass estimation from standard, ECG-gated, non-contrast CT using an artificial intelligence (AI) approach and compare it with coronary CT angiography (CTA) and cardiac MRI.

Methods: We enrolled consecutive patients who underwent coronary CTA, which included non-contrast CT calcium scanning and contrast CTA, and cardiac MRI. The median interval between coronary CTA and MRI was 22 days (IQR: 3-76). We utilized an nn-Unet AI model that automatically segmented non-contrast CT structures. AI measurement of LV mass was compared to contrast CTA and MRI.

Results: A total of 316 patients (Age: 57.1±16.7, 56% male) were included. The AI segmentation took on average 22 seconds per case. An excellent correlation was observed between AI and contrast CTA LV mass measures (r=0.84, p<0.001), with no significant differences (136.5±55.3 vs. 139.6±56.9 g, p=0.133). Bland-Altman analysis showed minimal bias of 2.9. When compared to MRI, measured LV mass was higher with AI (136.5±55.3 vs. 127.1±53.1 g, p<0.001). There was an excellent correlation between AI and MRI (r=0.85, p<0.001), with a small bias (-9.4). There were no statistical differences between the correlations of LV mass between contrast CTA and MRI, or AI and MRI.

Conclusions: The AI-based automated estimation of LV mass from non-contrast CT demonstrated excellent correlations and minimal biases when compared to contrast CTA and MRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802664PMC
http://dx.doi.org/10.1101/2024.01.12.24301169DOI Listing

Publication Analysis

Top Keywords

contrast cta
12
cardiac mri
8
cta cardiac
8
coronary cta
8
mass
6
cta
6
non-contrast
5
contrast
5
artificial intelligence-based
4
intelligence-based automated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!