A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An opponent striatal circuit for distributional reinforcement learning. | LitMetric

Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL). The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs to reap the computational benefits of distributional RL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802299PMC
http://dx.doi.org/10.1101/2024.01.02.573966DOI Listing

Publication Analysis

Top Keywords

distributional reinforcement
8
reinforcement learning
8
mesolimbic dopamine
8
opponent striatal
4
striatal circuit
4
distributional
4
circuit distributional
4
learning
4
learning machine
4
machine learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!