Purpose: To investigate the spectral characteristics of choroidal nevi and assess the feasibility of quantifying the basal diameter of choroidal nevi using multispectral fundus images captured with trans-palpebral illumination.

Methods: The study employed a widefield fundus camera with multispectral (625 nm, 780 nm, 850 nm, and 970 nm) trans-palpebral illumination. Geometric features of choroidal nevi, including border clarity, overlying drusen, and lesion basal diameter, were characterized. Clinical imagers, including scanning laser ophthalmoscopy (SLO), autofluorescence (AF), and optical coherence tomography (OCT), were utilized for comparative assessment.

Results: Fundus images captured with trans-palpebral illumination depicted nevi as dark regions with high contrast against the background. Near-infrared (NIR) fundus images provided enhanced visibility of lesion borders compared to visible light fundus images and SLO images. Lesion-background contrast measurements revealed 635 nm SLO at 11% and 625 nm fundus at 42%. Significantly enhanced contrasts were observed in NIR fundus images at 780 nm (73%), 850 nm (63%), and 970 nm (67%). For quantifying the basal diameter of nevi, NIR fundus images at 780 nm and 850 nm yielded a deviation of less than 10% when compared to OCT B-scan measurements.

Conclusion: NIR fundus photography with trans-palpebral illumination enhances nevi visibility and boundary definition compared to SLO. Agreement in basal diameter measurements with OCT validates the accuracy and reliability of this method for choroidal nevi assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802649PMC
http://dx.doi.org/10.1101/2024.01.12.24301119DOI Listing

Publication Analysis

Top Keywords

fundus images
24
choroidal nevi
20
trans-palpebral illumination
16
basal diameter
16
nir fundus
16
fundus
9
multispectral fundus
8
fundus photography
8
nevi
8
quantifying basal
8

Similar Publications

Microvascular Metrics on Diabetic Retinopathy Severity: Analysis of Diabetic Eye Images from Real-World Data.

Biomedicines

December 2024

BCN Peptides, S.A., Polígono Industrial Els Vinyets-Els Fogars II, Sant Quintí de Mediona, 08777 Barcelona, Spain.

To quantify microvascular lesions in a large real-world data (RWD) set, based on single central retinal fundus images of diabetic eyes from different origins, with the aim of validating its use as a precision tool for classifying diabetic retinopathy (DR) severity. Retrospective meta-analysis across multiple fundus image datasets. The study analyzed 2445 retinal fundus images from diabetic patients across four diverse RWD international datasets, including populations from Spain, India, China and the US.

View Article and Find Full Text PDF

To assess the repeatability of a microperimetry methodology for quantifying visual function changes in the junctional zone of eyes with geographic atrophy (GA) in the clinical trial context. A post hoc analysis of the OAKS phase III trial was conducted, which enrolled patients with GA secondary to age-related macular degeneration. Microperimetry using a standard 10-2 fovea centered grid was performed at baseline and follow-up visits.

View Article and Find Full Text PDF

Neurodegeneration in glaucoma patients is clinically identified through longitudinal assessment of structure-function changes, including intraocular pressure, cup-to-disc ratios from fundus images, and optical coherence tomography imaging of the retinal nerve fiber layer. Use of human post-mortem ocular tissue for basic research is rising in the glaucoma field, yet there are challenges in assessing disease stage and severity, since tissue donations with informed consent are often unaccompanied by detailed pre-mortem clinical information. Further, the interpretation of disease severity based solely on anatomical and morphological assessments by histology can be affected by differences in death-to-preservation time and tissue processing.

View Article and Find Full Text PDF

Purpose: A projection-resolved optical coherence tomography angiography (PR-OCTA) algorithm with slab-specific strategy was applied in polypoidal choroidal vasculopathy (PCV) to differentiate between polyp and branching vascular network (BVN) and improve polyp detection by en face OCTA.

Methods: Twenty-nine participants diagnosed with PCV by indocyanine green angiography (ICGA) and 30 participants diagnosed with typical neovascular age-related macular degeneration (nAMD) were enrolled. Polyps were classified into three categories after using the slab-specific PR algorithm.

View Article and Find Full Text PDF

Purpose: The region of growth (ROG) of geographic atrophy (GA) throughout the macular area has an impact on visual outcomes. Here, we developed multiple deep learning models to predict the 1-year ROG of GA lesions using fundus autofluorescence (FAF) images.

Design: In this retrospective analysis, 3 types of models were developed using FAF images collected 6 months after baseline to predict the GA lesion area (segmented lesion mask) at 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!