A novel NaOH modified eggplant straw biochar supported green nanoscale zerovalent iron (P-nZVI/ESBC) composite was synthesized and its removal performance and reaction mechanism for tetracycline (TC) in water were investigated. Multiple characterizations showed that the prepared P-nZVI/ESBC composite contained oxygen-containing functional groups (hydroxyl, carbonyl, and carboxyl groups) and Fe species (nZVI and its oxides). The dosage of composite, temperature, and solution pH significantly affected the removal capacity of the P-nZVI/ESBC composite for TC. The Avrami fraction-order kinetic model and Sips adsorption isotherm model can fit well the removal process of TC by the P-nZVI/ESBC composite, indicating that the adsorption behavior of TC involved multiple adsorption mechanisms and chemical adsorption might occur. The maximum adsorption capacity of the P-nZVI/ESBC composite for TC was 304.62 mg g. The adsorption and reductive degradation were the dominant mechanisms of TC removal by the P-nZVI/ESBC composite. This work offers abundant information on the application of eggplant straw to manufacture biochar-based composites for the efficient removal of antibiotic contaminants from aquatic environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802144PMC
http://dx.doi.org/10.1039/d3ra08417eDOI Listing

Publication Analysis

Top Keywords

p-nzvi/esbc composite
24
eggplant straw
12
efficient removal
8
tetracycline water
8
modified eggplant
8
straw biochar
8
biochar supported
8
supported green
8
green nanoscale
8
nanoscale zerovalent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!