Objective: This study aimed to accurately segment teeth under complex oral conditions, including complex structural interference among adjacent teeth or malocclusion conditions, such as tooth rotation and displacement caused by dental crowding.
Study Design: Cone-beam computed tomography (CBCT) images were obtained from 19 patients with complex oral conditions, and a three-step solution was proposed. This study used a global convex level-set model to extract bony tissue and developed a flexible curve extraction method for separating neighbouring teeth under complex structural interference. In addition, a local level-set model with adaptive edge feature enhancement was proposed to segment individual teeth precisely. This model adaptively enhances edge features based on the structure of the root boundary and accurately distinguishes between the close-contact root and alveolar bone resulting from tooth rotation or displacement.
Results: The experimental results showed that the average Dice similarity coefficient values for incisors, canines, premolars, and molars were 93.30%, 93.47%, 93.24%, and 93.89%, respectively, and the average tooth centroid distances were 0.66, 0.61, 0.87, and 0.80 mm, respectively.
Conclusion: The proposed method can effectively segment teeth without relying on highly precise annotated datasets, yielding satisfactory results even under complex structural interference between adjacent teeth or tooth rotation and displacement caused by dental crowding. It is more robust than the other methods and provides valuable data for further research and clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801251 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e23642 | DOI Listing |
J Infect Dev Ctries
December 2024
Faculdade de Medicina de Campos, Campos dos Goytacazes, Brazil.
Introduction: Despite efforts by health organizations to share evidence-based information, fake news hindered the promotion of social distancing and vaccination during the coronavirus disease 2019 (COVID-19) pandemic. This study analyzed COVID-19 knowledge and practices in a vulnerable area in northern Rio de Janeiro, acknowledging the influence of the complex social and economic landscape on public health perceptions.
Methodology: This cross-sectional study was conducted in Novo Eldorado - a low-income, conflict-affected neighborhood in Campos dos Goytacazes - using a structured questionnaire, following the peak of COVID-19 deaths in Brazil (July-December 2021).
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, Ste. 876, New York, NY, 10032, USA.
The COVID-19 pandemic may have exacerbated mental health conditions by introducing and/or modifying stressors, particularly in university populations. We examined longitudinal patterns, time-varying predictors, and contemporaneous correlates of moderate-severe psychological distress (MS-PD) among college students. During 2020-2021, participants completed self-administered questionnaires quarterly (T1 = 562, T2 = 334, T3 = 221, and T4 = 169).
View Article and Find Full Text PDFSci Data
January 2025
Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, 04103, Germany.
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!