Astrocytes are the glial cells responsible for brain homeostasis, but if injured, they could damage neural cells even deadly. Genetic damage, DNA damage response (DDR), and its downstream cascades are dramatic events poorly studied in astrocytes. We propose that 1 h of 400 mmol/L ethanol and/or 1 μmol/L corticosterone exposure of cultured hippocampal astrocytes damages DNA, activating the DDR and eliciting functional changes. Immunolabeling against γH2AX (chromatin DNA damage sites), cyclin D1 (cell cycle control), nuclear (base excision repair, BER), and cytoplasmic (anti-inflammatory functions) APE1, ribosomal nucleolus proteins together with GFAP and S100β plus scanning electron microscopy studies of the astrocyte surface were carried out. Data obtained indicate significant DNA damage, immediate cell cycle arrest, and BER activation. Changes in the cytoplasmic signals of cyclin D1 and APE1, nucleolus number, and membrane-attached vesicles strongly suggest a reactivity like astrocyte response without significant morphological changes. Obtained results uncover astrocyte genome immediate vulnerability and DDR activation, plus a functional response that might in part, be signaled through extracellular vesicles, evidencing the complex influence that astrocytes may have on the CNS even upon short-term aggressions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800529 | PMC |
http://dx.doi.org/10.3389/ftox.2023.1277047 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem 91240, Israel.
Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.
Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.
Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.
Front Pharmacol
January 2025
The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: Polydatin (3,4',5-trihydroxy-3-β-d-glucopyranoside, PD) is known for its antioxidant and anti-inflammatory properties. Oxaliplatin (OXA)-based chemotherapy is the first-line treatment for metastatic and recurrent colorectal cancer (CRC). However, the lack of selectivity for normal cells often results in side effects.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt.
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.
Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!