The selective carbon capture and utilization (CCU) as a one-carbon (C1) feedstock offers dual advantages for mitigating the rising atmospheric CO content and producing fine chemicals/fuels. In this context, herein, we report the application of a porous bipyridine-functionalized, pyrene-based covalent organic framework (Pybpy-COF) for the stable anchoring of catalytic Ag(0) nanoparticles (NPs) and its catalytic investigation for fixation of CO to commodity chemicals at ambient conditions. Notably, Ag@Pybpy-COF showed excellent catalytic activity for the carboxylation of various terminal alkynes to corresponding alkynyl carboxylic acids/phenylpropiolic acids via C-H bond activation under atmospheric pressure conditions. Besides, carboxylative cyclization of various propargylic amines with CO to generate 2-oxazolidinones, an important class of antibiotics, has also been achieved under mild conditions. This significant catalytic activity of Ag@Pybpy-COF with wide functional group tolerance is rendered by the presence of highly exposed, alkynophilic Ag(0) catalytic sites decorated on the pore walls of high surface area (787 m g) Pybpy-COF. Further, density functional theory calculations unveiled the detailed mechanistic path of the Ag@Pybpy-COF-catalyzed transformation of CO to alkynyl carboxylic acids and 2-oxazolidinones. Moreover, the catalyst showed high recyclability for several cycles of reuse without significant loss in its catalytic activity and structural rigidity. This work demonstrates the promising application of Pybpy-COF for stable anchoring of Ag NPs for successful transformation of CO to valuable commodity chemicals at ambient conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16690 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001, Japan.
Ice-nucleating particles (INPs) significantly influence aerosol-cloud precipitation interactions at regional and global scales. However, information regarding the concentrations and origins of INPs over the open ocean, particularly at high latitudes, remains insufficient due to access difficulties. In this study, we investigated the concentrations and origins of INPs over the western North Pacific to the Arctic Ocean through ship-borne observations conducted in the early autumn of 2016.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
Reducing aggregation caused quenching and enhancing stability is crucial in the fabrication of organic light-emitting diodes. Herein, we successfully fabricated blue-emitting coordination polymer glasses using perylene dye and a zinc-based coordination glass. The aggregation of perylene monomers in the solid state was significantly suppressed, and the hybrid glass demonstrated high stability and strong photoluminescent quantum yield (75.
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
Myocardial infarction (MI) ranks as one of the primary causes of global disabilities and disease deaths. The association between fine particulate matter (PM2.5) and MI has gained attention in recent years.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!