Unlabelled: Extracellular vesicles (EV) have emerged as critical effectors in the cross-talk between cancer and normal cells by transferring intracellular materials between adjacent or distant cells. Previous studies have begun to elucidate how cancer cells, by secreting EVs, adapt normal cells at a metastatic site to facilitate cancer cell metastasis. In this study, we utilized a high-content microscopic screening platform to investigate the mechanisms of EV uptake by primary lung fibroblasts. A selected library containing 90 FDA-approved anticancer drugs was screened for the effect on fibroblast uptake of EVs from MDA-MB-231 breast cancer cells. Among the drugs identified to inhibit EV uptake without exerting significant cytotoxicity, we validated the dose-dependent effect of Trametinib (a MEK1/2 inhibitor) and Copanlisib (a PI3K inhibitor). Trametinib suppressed macropinocytosis in lung fibroblasts and inhibited EV uptake with a higher potency comparing with Copanlisib. Gene knockdown and overexpression studies demonstrated that uptake of MDA-MB-231 EVs by lung fibroblasts required MEK2. These findings provide important insights into the mechanisms underlying lung fibroblast uptake of breast cancer cell-derived EVs, which could play a role in breast cancer metastasis to the lungs and suggest potential therapeutic targets for preventing or treating this deadly disease.
Significance: Through a phenotypic screen, we found that MEK inhibitor Trametinib suppressed EV uptake and macropinocytosis in lung fibroblasts, and that EV uptake is mediated by MEK2 in these cells. Our results suggest that MEK2 inhibition could serve as a strategy to block cancer EV uptake by lung fibroblasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802141 | PMC |
http://dx.doi.org/10.1158/2767-9764.CRC-23-0316 | DOI Listing |
J Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo, 315000, Zhejiang, China.
Pulmonary fibrosis is characterized by progressive lung scarring, leading to a decline in lung function and an increase in morbidity and mortality. This study leverages single-cell sequencing and machine learning to unravel the complex cellular and molecular mechanisms underlying pulmonary fibrosis, aiming to improve diagnostic accuracy and uncover potential therapeutic targets. By analyzing lung tissue samples from pulmonary fibrosis patients, we identified distinct cellular phenotypes and gene expression patterns that contribute to the fibrotic process.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Regenerative Biology and Medicine, Chinese Institutes for Medical Research, Beijing, China.
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium.
View Article and Find Full Text PDFNat Commun
January 2025
Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used to treat non-small cell lung cancers with EGFR mutations, but drug resistance often emerges. Intratumor heterogeneity is a known cause of targeted therapy resistance and is considered a major factor in treatment failure. This study identifies clones of EGFR-mutant non-small cell lung tumors expressing low levels of both wild-type and mutant EGFR protein.
View Article and Find Full Text PDFOccup Environ Med
January 2025
Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, Maryland, USA
Background: Occupational exposure to endotoxin has been associated with reduced lung cancer risk. The mechanisms underlying this association are unclear, though immunological alterations likely play a role. Farmers who perform certain tasks (eg, raising hogs) can be highly exposed to endotoxin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!