In this paper, we report on the infrared luminescence of amorphous praseodymium-doped GeInSbSe waveguides, which can be used as infrared sources in photonic integrated circuits on silicon substrates. Amorphous chalcogenide thin films were deposited by radiofrequency magnetron cosputtering using an argon plasma whose deposition parameters were optimized for chalcogenide materials. The micropatterning as ridge waveguides of the chalcogenide cosputtered films was performed using photolithography and plasma-coupled reactive ion etching techniques. The influence of the rare earth concentration within those thin films on their optical properties and rare earth spectroscopic properties was investigated. Using an excitation wavelength of 1.55 μm, the mid-infrared luminescence of Pr ions from 2.5 to 5.5 μm was clearly demonstrated for studied chalcogenide materials. A wide range of waveguide widths and doping ratios were tested, assessing the ability of the cosputtering technique to preserve the luminescence properties of the rare earth ions initially observed in the bulk glass through the thin-film deposition and patterning process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14602 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan.
Rare earth elements (REEs) are emerging contaminants rendering potential risks in soils to environmental quality and human health. The causation between their geochemical signatures and contamination levels with parent rocks and soil properties are critical for REEs risk assessments, which are urgently needed globally. Thus, this study aimed to elucidate cause-and-effect among hydrofluoric-acid-digested total and ethylenediaminetetraacetic acid extracted bioavailable soil REEs and their contamination degree evaluated by pollution indices in 268 soil layer (horizon) samples from 50 soil profiles derived from felsic, intermediate, mafic, ultramafic, and sedimentary rocks in Taiwan.
View Article and Find Full Text PDFJ Hum Evol
January 2025
Department of Anthropology, University of Connecticut, 354 Mansfield Road, Unit 2176, Storrs, CT, 06269, USA.
As a potential corridor connecting Southwest Asia with western and northern Europe, the Armenian Highlands and southern Caucasus hold great potential for increasing our understanding of Upper Paleolithic behavioral and cultural variability. However, given the dearth of Upper Paleolithic sites, we lack the data necessary to answer basic questions regarding the timing and nature of the Upper Paleolithic in this region. Solak-1 is an open-air site located along the upper Hrazdan Valley (1635 m above sea level) in central Armenia.
View Article and Find Full Text PDFACS Sens
January 2025
The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.
Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!