Compound-specific isotope analysis (CSIA) gas chromatography-isotope ratio mass spectrometry (GC-IRMS) is a potent tool to elucidate the fate of (semi-)volatile organic contaminants in technical and environmental systems. Yet, due to the comparatively low sensitivity of IRMS, an enrichment step prior to analysis often is inevitable. A promising approach for fast as well as economic analyte extraction and preconcentration prior to CSIA is dispersive liquid-liquid microextraction (DLLME) - a well-established technique in concentration analysis of contaminants from aqueous samples. Here, we present and evaluate the first DLLME method for GC-IRMS exemplified by the analysis of chlorinated phenols (4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) as model compounds. The analytes were simultaneously acetylated with acetic anhydride and extracted from the aqueous phase using a binary solvent mixture of acetone and tetrachloroethylene. With this method, reproducible C values were achieved with errors ≤ 0.6‰ ( = 3) for aqueous concentrations down to 100 μg L. With preconcentration factors between 130 and 220, the method outperformed conventional liquid-liquid extraction in terms of sample preparation time and resource consumption with comparable reproducibility. Furthermore, we have demonstrated the suitability of the method (i) for the extraction of the analytes from a spiked river water sample and (ii) to quantify kinetic carbon isotope effect for 2,4,6-trichlorophenol during reduction with zero-valent zinc in a laboratory batch experiment. The presented work shows for the first time the potential of DLLME for analyte enrichment prior to CSIA and paves the way for further developments, such as the extraction of other compounds or scaling up to larger sample volumes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ay01981k | DOI Listing |
Anal Methods
January 2025
Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.
View Article and Find Full Text PDFMolecules
December 2024
College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China.
A convenient, rapid, and environmentally friendly method, emulsive liquid-liquid microextraction combined with high-performance liquid chromatography, was established to determine phthalic acid esters in tap, river, lake, and sea water. After the method's optimization, we obtained the appropriate volume of the extractant and pure water, the number of strokes, the separation methods, the mass volume fraction of the demulsifier, the demulsifier volume, the sample volume, the salt amount, and the pH conditions. This method requires only 200 μL of heptanoic acid (fatty acid) as the extractant and 75 mg of sodium acetate as demulsifiers for fast microextraction and separation, respectively, avoiding the use of further equipment.
View Article and Find Full Text PDFCell
December 2024
Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:
J Environ Health Sci Eng
June 2025
Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
In the present study, two most commonly used Perfluoroalkyl substances (PFASs), namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), were determined in 45 tap water samples from the city of Isfahan (Iran) by dispersive liquid-liquid extraction (DLLME) and liquid chromatography-mass spectrophotometry (LC-MS) analysis. Risk assessment was also performed to determine the risk to human health. The mean concentration of PFOA was 38.
View Article and Find Full Text PDFTalanta
December 2024
Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain.
A reliable and sensitive analytical platform is proposed for the assessment of pig exposure to mycotoxins through the consumption of commercial feed. A total of 48 naturally contaminated feed and 55 urine samples collected from eight Spanish farms were analyzed using a fast and simple methodology based on solid-liquid extraction (SLE) or liquid-liquid extraction (LLE) and dispersive liquid-liquid microextraction (DLLME). High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used for the targeted analysis of 27 mycotoxins from different families in both matrices achieving limits of quantification in a range of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!