[NH(CH)NH]SnX (X = Br, I): Dion-Jacobson type 2-D perovskites with short interlayer spacing.

Dalton Trans

New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.

Published: February 2024

Two-dimensional tin(II) halide perovskites stand as an environmentally benign alternative to Pb(II) halide perovskites. However, they are often challenging to make due to the oxidation of Sn(II) ion to more stable Sn(IV) ion. Here we report hybrid tin bromide and iodide perovskites: (1,4-BDA)Sn(IV)Br and (1,4-BDA)Sn(II)X (where X = Br, I; 1,4-BDA = 1,4-diammoniumbutane) with 0D and 2D structures, respectively. Their synthesis, structural characterization and photophysical properties are reported. They show bandgaps in the 1.94-2.70 eV range.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03772jDOI Listing

Publication Analysis

Top Keywords

halide perovskites
8
[nhchnh]snx dion-jacobson
4
dion-jacobson type
4
type 2-d
4
perovskites
4
2-d perovskites
4
perovskites short
4
short interlayer
4
interlayer spacing
4
spacing two-dimensional
4

Similar Publications

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.

View Article and Find Full Text PDF

Constructing a Self-Referenced NIR-II Thermometer with Energy Tuning of Coordinating Water Molecules by a Minimalist Method.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb/Nd-doped zero-dimensional CsScCl·HO by a simple "dissolve-dry" method.

View Article and Find Full Text PDF

Oriented wide-bandgap perovskites for monolithic silicon-based tandems with over 1000 hours operational stability.

Nat Commun

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

The instability of hybrid wide-bandgap (WBG) perovskite materials (with bandgap larger than 1.68 eV) still stands out as a major constraint for the commercialization of perovskite/silicon tandem photovoltaics, yet its correlation with the facet properties of WBG perovskites has not been revealed. Herein, we combine experiments and theoretical calculations to comprehensively understand the facet-dependent instability of WBG perovskites.

View Article and Find Full Text PDF

Surface defect-induced photoluminescence blinking and photodarkening are ubiquitous in lead halide perovskite quantum dots. Despite efforts to stabilize the surface by chemically engineering ligand binding moieties, blinking accompanied by photodegradation still poses barriers to implementing perovskite quantum dots in quantum emitters. To date, ligand tail engineering in the solid state has rarely been explored for perovskite quantum dots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!