This study emphasizes the potential risk posed by microplastics, particularly in tap water. Numerous studies have reported the removal of microplastics, but the limitations in addressing this issue remain challenging. To tackle this problem, a new method is introduced using tandem flexible structures (FSs) for microplastic removal. The present study focused on understanding the hydrodynamic characteristics between FSs to utilize microplastic removal. This comprehension of fluid flow and FSs offers valuable insights for improving the efficiency of microplastic removal methods. Therefore, the optimal conditions for removing microplastics were experimentally investigated inside the FSs gap region. Based on the gap distance and height, the flow structures between FSs were investigated. A small secondary vortex structure that could trap particles from upstream was continuously maintained behind the upstream FSs under certain geometric conditions. It is shown that this vortex structure has an effective way of confining the particles from upstream. The persistency of a small secondary vortex was also evaluated. This study may be helpful to researchers working on microplastic removal and FSs with a tandem arrangement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818533PMC
http://dx.doi.org/10.3390/mi15010100DOI Listing

Publication Analysis

Top Keywords

microplastic removal
16
tandem flexible
8
flexible structures
8
removal microplastics
8
structures fss
8
small secondary
8
secondary vortex
8
vortex structure
8
particles upstream
8
fss
7

Similar Publications

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

Microplastics (MP) contamination in food and water poses significant health risks. While microbes that form biofilm show potential for removing MP from the environment, no methods currently exist to eliminate these non-degradable MP from the human body. In this study, we propose using probiotics to adsorb and remove ingested MP within the gut.

View Article and Find Full Text PDF

The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.

View Article and Find Full Text PDF

Size-specific mediation of the physiological responses and degradation ability of microalgae to sulfamerazine by microplastics.

Aquat Toxicol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.

Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of Phaeodactylum tricornutum to sulfamerazine (SMR).

View Article and Find Full Text PDF

The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!