Most 2D materials are unstable under ambient conditions. Assembly of van der Waals heterostructures in the inert atmosphere of the glove box with ex situ lithography partially solves the problem of device fabrication out of unstable materials. In our paper, we demonstrate an approach to the next-generation inert-atmosphere (nitrogen, <20 ppm oxygen content) fabrication setup, including optical contact mask lithography with a 2 μm resolution, metal evaporation, lift-off and placement of the sample to the cryostat for electric measurements in the same inert atmosphere environment. We consider basic construction principles, budget considerations, and showcase the fabrication and subsequent degradation of black-phosphorous-based structures within weeks. The proposed solutions are surprisingly compact and inexpensive, making them feasible for implementation in numerous 2D materials laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154319 | PMC |
http://dx.doi.org/10.3390/mi15010094 | DOI Listing |
Micromachines (Basel)
December 2023
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
Most 2D materials are unstable under ambient conditions. Assembly of van der Waals heterostructures in the inert atmosphere of the glove box with ex situ lithography partially solves the problem of device fabrication out of unstable materials. In our paper, we demonstrate an approach to the next-generation inert-atmosphere (nitrogen, <20 ppm oxygen content) fabrication setup, including optical contact mask lithography with a 2 μm resolution, metal evaporation, lift-off and placement of the sample to the cryostat for electric measurements in the same inert atmosphere environment.
View Article and Find Full Text PDFMicrosyst Nanoeng
February 2022
Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Glass-like carbon (GC) is a nongraphitizing material composed entirely of carbon atoms produced from selected organic polymer resins by controlled pyrolysis in an inert atmosphere. The GC properties are a combination of the properties of glass, ceramic, and graphite, including hardness, low density, low thermal conductivity, high chemical inertness, biocompatibility, high electrical conductivity, and microfabrication process compatibility. Despite these unique properties, the application of GC in mechanical sensors has not been explored thus far.
View Article and Find Full Text PDFJ R Soc Interface
August 2010
School of Materials Engineering, Purdue University, West Lafayette, IN, USA.
We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary.
View Article and Find Full Text PDFTalanta
March 2009
Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
This work reports on the performance of a user-friendly flow injection analysis (FIA) system for the monitoring of free chlorine. A methacrylate flow cell integrating a gold thin-film microelectrode, together with an on-chip gold counter electrode, both fabricated by microfabrication technology, provided robustness, low output impedance, rapid response and low cost to the proposed flow system. An external Ag/AgCl reference electrode placed downstream the chip completes the electrochemical cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!