An ultra-narrow precision slit with a width of less than ten micrometers is the key structure of some optical components, but the fabrication of these structures is still very difficult to accomplish. To fabricate these slits, this paper proposed a periodically reducing current over-growth electroforming process. In the periodically reducing current over-growth electroforming, the electric current applied to the electrodeposition process is periodically stepped down rather than being constant. Simulations and experimentation studies were carried out to verify the feasibility of the proposed process, and further optimization of process parameters was implemented experimentally to achieve the desired ultra-narrow precision slits. The current values were: I1=Iinitial, I2=0.75Iinitial at Qc=0.5Qt, I3=0.5Iinitial at Qc=0.75Qt,respectively. It was shown that, compared with conventional constant current over-growth electroforming, the proposed process can significantly improve the surface quality and geometrical accuracy of the fabricated slits and can markedly enhance the achievement of the formed ultra-narrow slits. With the proposed process, slits with a width of down to 5 ± 0.1 μm and a surface roughness of less than 62.8 nm can be easily achieved. This can improve the determination sensitivity and linear range of the calibration curves of spectral imagers and food and chemical analysis instruments. Periodically reducing current over-growth electroforming is effective and advantageous in fabricating ultra-narrow precision slits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821455 | PMC |
http://dx.doi.org/10.3390/mi15010076 | DOI Listing |
Small Methods
October 2024
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Janus transition metal dichalcogenides (TMDs) are a novel class of 2D materials with unique mirror asymmetry. Plasma-assisted synthesis at room temperature is favored for producing Janus TMDs due to its energy efficiency and prevention of alloying. However, current methods require stringent control over growth conditions, risking defects or unintended materials.
View Article and Find Full Text PDFNat Commun
March 2024
Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
Understanding how organisms have adapted to persist in unpredictable environments is a fundamental goal in biology. Bet hedging, an evolutionary adaptation observed from microbes to humans, facilitates reproduction and population persistence in randomly fluctuating environments. Despite its prevalence, empirical evidence in microalgae, crucial primary producers and carbon sinks, is lacking.
View Article and Find Full Text PDFMicromachines (Basel)
December 2023
School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
An ultra-narrow precision slit with a width of less than ten micrometers is the key structure of some optical components, but the fabrication of these structures is still very difficult to accomplish. To fabricate these slits, this paper proposed a periodically reducing current over-growth electroforming process. In the periodically reducing current over-growth electroforming, the electric current applied to the electrodeposition process is periodically stepped down rather than being constant.
View Article and Find Full Text PDFCell Biol Int
February 2024
Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
PLoS One
November 2023
Faculty of Medicine and Pharmacy, Human Pathology Biomedicine and Environment Laboratory, Sidi Mohammed Ben Abdellah University, Fez, Morocco.
Background: Klebsiella spp. can colonize the intestine of preterm neonates, and over-growth has been associated with necrotizing enterocolitis, hospital-acquired infections, and late-onset sepsis. This could lead us to suggest that the clinical pertinence of intestinal colonization with ESBL in preterm neonates appears to be important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!