Zebrafish have emerged as a useful model for biomedical research and have been used in environmental toxicology studies. However, the presence of the chorion during the embryo stage limits cellular exposure to toxic elements and creates the possibility of a false-negative or reduced sensitivity in fish embryo toxicity testing (FET). This paper presents the use of electroporation as a technique to improve the delivery of toxic elements inside the chorion, increasing the exposure level of the toxins at an early embryo stage (<3 h post-fertilization). A custom-made electroporation device with the required electrical circuitry has been developed to position embryos between electrodes that provide electrical pulses to expedite the entry of molecules inside the chorion. The optimized parameters facilitate material entering into the chorion without affecting the survival rate of the embryos. The effectiveness of the electroporation system is demonstrated using Trypan blue dye and gold nanoparticles (AuNPs, 20-40 nm). Our results demonstrate the feasibility of controlling the concentration of dye and nanoparticles delivered inside the chorion by optimizing the electrical parameters, including pulse width, pulse number, and amplitude. Next, we tested silver nanoparticles (AgNPs, 10 nm), a commonly used toxin that can lower mortality, affect heart rate, and cause phenotypic defects. We found that electroporation of AgNPs reduces the exposure time required for toxicity testing from 4 days to hours. Electroporation for FET can provide rapid entry of potential toxins into zebrafish embryos, reducing the time required for toxicity testing and drug delivery experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819337 | PMC |
http://dx.doi.org/10.3390/mi15010049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!