Atherosclerotic disease is a substantial global burden, and existing treatments, such as statins, are recommended to lower low-density lipoprotein cholesterol (LDL-C) levels and inhibit the progression of atherosclerosis. However, side effects, including gastrointestinal unease, potential harm to the liver, and discomfort in the muscles, might be observed. In this study, we propose a novel method using periodic mesoporous silica nanoparticles (PMS) to create heparin-modified PMS (PMS-HP) with excellent biocompatibility, enabling selective removal of LDL-C from the blood. In vitro, through the introduction of PMS-HP into the plasma of mice, we observed that, compared to PMS alone, PMS-HP could selectively adsorb LDL-C while avoiding interference with valuable components such as plasma proteins and high-density lipoprotein cholesterol (HDL-C). Notably, further investigations revealed that the adsorption of LDL-C by PMS-HP could be well-fitted to quasi-first-order (R = 0.993) and quasi-second-order adsorption models (R = 0.998). Likewise, in vivo, intravenous injection of PMS-HP enabled targeted LDL-C adsorption (6.5 ± 0.73 vs. 8.6 ± 0.76 mM, < 0.001) without affecting other plasma constituents, contributing to reducing intravascular plaque formation (3.66% ± 1.06% vs. 1.87% ± 0.79%, < 0.05) on the aortic wall and inhibiting vascular remodeling (27.2% ± 6.55% vs. 38.3% ± 1.99%, < 0.05). Compared to existing lipid adsorption techniques, PMS-HP exhibited superior biocompatibility and recyclability, rendering it valuable for both in vivo and in vitro applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821319PMC
http://dx.doi.org/10.3390/pharmaceutics16010074DOI Listing

Publication Analysis

Top Keywords

lipoprotein cholesterol
12
periodic mesoporous
8
mesoporous silica
8
silica nanoparticles
8
progression atherosclerosis
8
low-density lipoprotein
8
pms pms-hp
8
pms-hp
6
ldl-c
5
functionalized periodic
4

Similar Publications

Lipoprotein(a) Atherosclerotic Cardiovascular Disease Risk Score Development and Prediction in Primary Prevention From Real-World Data.

Circ Genom Precis Med

January 2025

Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).

Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).

Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.

View Article and Find Full Text PDF

Objective: Recent studies have underscored the metabolic and cardiovascular regulatory capacity of perirenal adipose tissue (PAT), implicating its potential involvement in the pathogenesis of left ventricular hypertrophy (LVH). This investigation aims to assess the relationship between increased PAT mass and LVH, while also examining the potential mediating role of insulin resistance in this relationship among individuals with type 2 diabetes mellitus (T2DM).

Method: 1112 individuals with T2DM were prospectively recruited for this study.

View Article and Find Full Text PDF

Objective: This study investigates the protective effects of lactic acid, a metabolite of , on non-alcoholic fatty liver disease (NAFLD) induced by a high-sugar, high-fat diet (HFD) in mice, in the context of the gut-liver axis.

Methods: A NAFLD mouse model was established using a HFD, and different intervention groups were set up to study the protective effects of and its metabolite lactic acid. The groups included a control group, NAFLD group, treatment group, Glyceraldehyde-3-P (G-3P) co-treatment group, and NOD-like receptor family pyrin domain containing 3 (NLRP3) overexpression group.

View Article and Find Full Text PDF

Lipid-Lowering Drugs and Pulmonary Vascular Disease: A Mendelian Randomization Study.

Pulm Circ

January 2025

Center of Gerontology and Geriatrics National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University Chengdu China.

The therapeutic value of lipid-lowering drugs in pulmonary vascular disease remains uncertain due to insufficient studies and evidence. This study aims to investigate the causal effects of lipid-lowering drugs (specifically, inhibitors of APOB, CETP, HMGCR, NPC1L1, and PCSK9) on pulmonary vascular diseases using a Mendelian randomization (MR) approach. We utilized summary-level statistics from genome-wide association studies (GWAS) to simulate the exposure to low-density lipoprotein cholesterol (LDL-C) and its outcomes on pulmonary arterial hypertension (PAH), pulmonary embolism (PE), and pulmonary heart disease (PHD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!