Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Postbiotics are gaining increasing interest among the scientific community as well as at the level of food processing enterprises. The aim of this preliminary study was to characterise the metabolic diversity of a novel strain, BIOCC 1719, of human origin. The change after 24 h cultivation in three media was assessed using a metabolomic approach. Milk-based substrates favoured the activity of the strain, promoting the production of B vitamins, essential amino acids, bile acids, and fatty acids. Vitamins B1, B2, B6, B7, and B12 (with an average increase of 20-30%) were produced in both whole milk and whey; the increased production in the latter was as high as 100% for B7 and 744% for B12. The essential amino acids methionine and threonine were produced (>38%) in both milk and whey, and there was an increased production of leucine (>50%) in milk and lysine (126%) in whey. Increases in the content of docosahexaenoic acid (DHA) by 20%, deoxycholic acid in milk and whey (141% and 122%, respectively), and cholic acid (52%) in milk were recorded. During the preliminary characterisation of the metabolic diversity of the novel strain, BIOCC 1719, we identified the bioactive compounds produced by the strain during fermentation. This suggests its potential use as a postbiotic ingredient to enrich the human diet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818833 | PMC |
http://dx.doi.org/10.3390/microorganisms12010174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!