A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increasing the Pentose Phosphate Pathway Flux to Improve Plasmid DNA Production in Engineered . | LitMetric

The demand of plasmid DNA (pDNA) as a key element for gene therapy products, as well as mRNA and DNA vaccines, is increasing together with the need for more efficient production processes. An engineered strain lacking the phosphotransferase system and the pyruvate kinase A gene has been shown to produce more pDNA than its parental strain. With the aim of improving pDNA production in the engineered strain, several strategies to increase the flux to the pentose phosphate pathway (PPP) were evaluated. The simultaneous consumption of glucose and glycerol was a simple way to increase the growth rate, pDNA production rate, and supercoiled fraction (SCF). The overexpression of key genes from the PPP also improved pDNA production in glucose, but not in mixtures of glucose and glycerol. Particularly, the gene coding for the glucose 6-phosphate dehydrogenase (G6PDH) strongly improved the SCF, growth rate, and pDNA production rate. A linear relationship between the G6PDH activity and pDNA yield was found. A higher flux through the PPP was confirmed by flux balance analysis, which also estimates relevant differences in fluxes of the tricarboxylic acid cycle. These results are useful for developing further cell engineering strategies to increase pDNA production and quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820320PMC
http://dx.doi.org/10.3390/microorganisms12010150DOI Listing

Publication Analysis

Top Keywords

pdna production
20
pentose phosphate
8
phosphate pathway
8
plasmid dna
8
production engineered
8
pdna
8
engineered strain
8
strategies increase
8
glucose glycerol
8
growth rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!