For tumors wherein cancer cells remain in the tissue after colorectal cancer surgery, a hyperthermic anticancer agent is injected into the abdominal cavity to necrotize the remaining cancer cells with heat using a hyperthermic intraperitoneal chemotherapy system. However, during circulation, the processing temperature is out of range and the processing result is deteriorated. This paper proposes a look-up table (LUT) module design method that can stably maintain the processing temperature range during circulation via feedback. If the temperature decreases or increases, the LUT transmits a command signal to the heat exchanger to reduce or increase heat input, thereby maintaining the treatment temperature range. The command signal for increasing and decreasing heat input is and , respectively. The command signal for the treatment temperature range is . If drug temperatures below 41 and above 43 °C are input to the LUT, it sends a or signal to the heat exchanger to increase or decrease the input heat, respectively. If the drug's temperature is 41-43 °C, the LUT generates a signal and proceeds with the treatment. The proposed system can automatically control drug temperature using temperature feedback to ensure rapid, accurate, and safe treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821041 | PMC |
http://dx.doi.org/10.3390/s24020596 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong.
Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.
Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India.
The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States.
Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.
An improvement in the computational efficiency of polarizable force field simulations is made through the development of a polarizable Drude water model, SWM3, in combination with the use of Lennard-Jones Particle Mesh Ewald (LJPME) for the treatment of long-range LJ interactions. The experimental bulk properties, density, heat of vaporization, dielectric constant, and self-diffusion constant of the SWM3 model are accurately replicated at ambient condition. The temperature dependence of the bulk properties is also captured except for the density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!