During the COVID-19 pandemic, the number of cases continued to rise. As a result, there was a growing demand for alternative control methods to traditional buttons or touch screens. However, most current gesture recognition technologies rely on machine vision methods. However, this method can lead to suboptimal recognition results, especially in situations where the camera is operating in low-light conditions or encounters complex backgrounds. This study introduces an innovative gesture recognition system for large movements that uses a combination of millimeter wave radar and a thermal imager, where the multi-color conversion algorithm is used to improve palm recognition on the thermal imager together with deep learning approaches to improve its accuracy. While the user performs gestures, the mmWave radar captures point cloud information, which is then analyzed through neural network model inference. It also integrates thermal imaging and palm recognition to effectively track and monitor hand movements on the screen. The results suggest that this combined method significantly improves accuracy, reaching a rate of over 80%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820278PMC
http://dx.doi.org/10.3390/s24020581DOI Listing

Publication Analysis

Top Keywords

gesture recognition
12
thermal imager
12
recognition system
8
millimeter wave
8
palm recognition
8
recognition
6
implementation gesture
4
system millimeter
4
thermal
4
wave thermal
4

Similar Publications

Automatic Sign Language Recognition Systems (ASLR) offers smooth communication between hearing-impaired and normal-hearing individuals, enhancing educational opportunities for impaired. However, it struggles with "curse of dimensionality" due to excessive features resulting in prolonged training time and exhaustive computational demand. This paper proposes technique that integrates machine learning and swarm intelligence to effectively address this issue.

View Article and Find Full Text PDF

Myoelectric control has emerged as a promising approach for a wide range of applications, including controlling limb prosthetics, teleoperating robots and enabling immersive interactions in the Metaverse. However, the accuracy and robustness of myoelectric control systems are often affected by various factors, including muscle fatigue, perspiration, drifts in electrode positions and changes in arm position. The latter has received less attention despite its significant impact on signal quality and decoding accuracy.

View Article and Find Full Text PDF

Advancements in sign language processing technology hinge on the availability of extensive, reliable datasets, comprehensive instructions, and adherence to ethical guidelines. To facilitate progress in gesture recognition and translation systems and to support the Azerbaijani sign language community we present the Azerbaijani Sign Language Dataset (AzSLD). This comprehensive dataset was collected from a diverse group of sign language users, encompassing a range of linguistic parameters.

View Article and Find Full Text PDF

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.

View Article and Find Full Text PDF

A real-time approach for surgical activity recognition and prediction based on transformer models in robot-assisted surgery.

Int J Comput Assist Radiol Surg

January 2025

Advanced Medical Devices Laboratory, Kyushu University, Nishi-ku, Fukuoka, 819-0382, Japan.

Purpose: This paper presents a deep learning approach to recognize and predict surgical activity in robot-assisted minimally invasive surgery (RAMIS). Our primary objective is to deploy the developed model for implementing a real-time surgical risk monitoring system within the realm of RAMIS.

Methods: We propose a modified Transformer model with the architecture comprising no positional encoding, 5 fully connected layers, 1 encoder, and 3 decoders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!