Thiran Filters for Wideband DSP-Based Multi-Beam True Time Delay RF Sensing Applications.

Sensors (Basel)

Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33199, USA.

Published: January 2024

The ability to sense propagating electromagnetic plane waves based on their directions of arrival (DOAs) is fundamental to a range of radio frequency (RF) sensing, communications, and imaging applications. This paper introduces an algorithm for the wideband true time delay digital delay Vandermonde matrix (DVM), utilizing Thiran fractional delays that are useful for realizing RF sensors having multiple look DOA support. The digital DVM algorithm leverages sparse matrix factorization to yield multiple simultaneous RF beams for low-complexity sensing applications. Consequently, the proposed algorithm offers a reduction in circuit complexity for multi-beam digital wideband beamforming systems employing Thiran fractional delays. Unlike finite impulse response filter-based approaches which are wideband but of a high filter order, the Thiran filters trade usable bandwidth in favor of low-complexity circuits. The phase and group delay responses of Thiran filters with delays of a fractional sampling period will be demonstrated. Thiran filters show favorable results for sample delay blocks with a temporal oversampling factor of three. Thiran fractional delays of orders three and four are mapped to Xilinx FPGA RF-SoC technologies for evaluation. The preliminary results of the APF-based Thiran fractional delays on FPGA can potentially be used to realize DVM factorizations using application-specific integrated circuit (ASIC) technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819550PMC
http://dx.doi.org/10.3390/s24020576DOI Listing

Publication Analysis

Top Keywords

thiran filters
16
thiran fractional
16
fractional delays
16
thiran
8
true time
8
time delay
8
sensing applications
8
delay
5
fractional
5
delays
5

Similar Publications

The ability to sense propagating electromagnetic plane waves based on their directions of arrival (DOAs) is fundamental to a range of radio frequency (RF) sensing, communications, and imaging applications. This paper introduces an algorithm for the wideband true time delay digital delay Vandermonde matrix (DVM), utilizing Thiran fractional delays that are useful for realizing RF sensors having multiple look DOA support. The digital DVM algorithm leverages sparse matrix factorization to yield multiple simultaneous RF beams for low-complexity sensing applications.

View Article and Find Full Text PDF

This paper develops a discrete-time repetitive control (RC) system with a fractional-delay internal model. Unlike the conventional RC, the time delay for constructing the internal model is not necessarily an integer, implying that the time delay is allowed to be fractional. In this work, a fractional delay-based repetitive control system is presented.

View Article and Find Full Text PDF

This paper presents a simple and straightforward design of a discrete-time fractional-order odd-harmonics repetitive controller (RC). Unlike general RC designs, the proposed method utilizes an internal model with a half-period delay and a stabilizing controller with a fractional phase lead compensator. First, the odd-harmonics internal model representing odd-harmonics frequencies is constructed by using the information of the reference's basis period and the preferred tracking bandwidth.

View Article and Find Full Text PDF

Evaluating reproducibility and subject-specificity of microstructure-informed connectivity.

Neuroimage

September 2022

Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Clinical Neuroscience, University Hospital of Geneva (HUG), Geneva, Switzerland.

Tractography enables identifying and evaluating the healthy and diseased brain's white matter pathways from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the performance of these techniques is the lack of ground truth brain data.

View Article and Find Full Text PDF

Ultrafast ultrasound (US) revolutionized biomedical imaging with its capability of acquiring full-view frames at over 1 kHz, unlocking breakthrough modalities such as shear-wave elastography and functional US neuroimaging. Yet, it suffers from strong diffraction artifacts, mainly caused by grating lobes, sidelobes, or edge waves. Multiple acquisitions are typically required to obtain a sufficient image quality, at the cost of a reduced frame rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!