Passive Control in a Continuous Beam under a Traveling Heavy Mass: Dynamic Response and Experimental Verification.

Sensors (Basel)

Laboratory for Experimental Strength of Materials and Structures, School of Civil Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

Published: January 2024

The motion of a heavy mass on a bridge span causes vibrations whose magnitude and frequency content depend on the mechanical properties of the structural system, including the magnitude of that mass and its speed of traverse. In order to limit vibrations that could potentially cause damage, a simple passive device configuration, namely the tuned mass damper (TMD), is introduced and its effect on the beam vibrations analyzed. Specifically, a TMD in the form of a single-degree-of-freedom (SDOF) unit comprising a mass and a spring is placed on the span to act as a secondary system for absorbing vibrations from the primary system, i.e., the bridge itself. A Lagrangian energy balance formulation is used to derive the governing equations of motion, followed by an analytical solution using the Laplace transform to investigate the transmission of vibratory energy between primary and secondary systems. Results are given in terms of time histories, Fourier spectra and spectrograms, where the influence of the TMD in reducing vibratory energy is demonstrated. The TMD is placed in the region where the beam's transverse motion is at a maximum, while its mechanical properties are sub-optimal, in the sense that there is no separate damper present and minimal damping is provided by the spring element itself. In parallel with the analysis, a series of experiments involving a simply supported model steel bridge span traversed by a heavy mass are conducted to first gauge the analytical solution and then to confirm the validity of the proposed passive scheme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820652PMC
http://dx.doi.org/10.3390/s24020573DOI Listing

Publication Analysis

Top Keywords

heavy mass
12
bridge span
8
mechanical properties
8
analytical solution
8
vibratory energy
8
mass
6
passive control
4
control continuous
4
continuous beam
4
beam traveling
4

Similar Publications

Qualitative and Quantitative Analysis of Tire Wear Particles (TWPs) in Road Dust Using a Novel Mode of Operation of TGA-GC/MS.

Environ Sci Technol Lett

January 2025

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom.

Detecting and quantifying tire wear particles (TWPs) in the environment pose a unique environmental challenge due to their chemical complexity. There are emerging concerns around TWPs due to their potential high numbers of particles released, outnumbering microplastics, as well as the leaching of toxic additives such as 6-PPD which has been linked to the death of salmon even when present at very low levels (<0.1 μg/L).

View Article and Find Full Text PDF

Naturally occurring peptides display a wide mass distribution after ionization due to the presence of heavy isotopes of C, H, N, O, and S and hydrogen loss. There is a crucial need for sensitive methods that collect as much information as possible about all plasma peptide forms. Statistical analysis of the delta mass distribution of peptide precursors from MS/MS spectra that were matched to 63,077 peptide sequences by X!TANDEM revealed Gaussian peaks representing heavy isotopes and hydrogen loss at integer delta mass values of -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da.

View Article and Find Full Text PDF

Insight into Iron(III)-Tannate Biosorbent for Adsorption Desalination and Tertiary Treatment of Water Resources.

ACS Omega

January 2025

Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.

An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.

View Article and Find Full Text PDF

We propose a modular addition strategy-regulated polymerization-induced self-assembly (PISA) system to effectively control the reaction kinetics and self-assembly morphologies. We validated this strategy by performing experiments on a well-established PISA system. Two categories of modular addition strategies, , the multistep addition strategy and the constant rate addition strategy, were investigated.

View Article and Find Full Text PDF

Sarcopenia, an aging-related geriatric syndrome, is characterized by decreased muscle mass, declined muscle strength, and/or physical dysfunction. It is associated with significantly increased risks of falls, frailty, disability, and even death, placing a heavy burden on individuals and society. Standardized diagnosis and treatment of sarcopenia are of paramount importance for clinical practice and the development of healthy aging in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!